Bayesian linear inverse problems in regularity scales

被引:12
作者
Gugushvili, Shota [1 ]
van der Vaart, Aad [2 ]
Yan, Dong [2 ]
机构
[1] Wageningen Univ & Res, Biometris, Wageningen, Netherlands
[2] Leiden Univ, Math Inst, Leiden, Netherlands
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2020年 / 56卷 / 03期
基金
欧洲研究理事会;
关键词
Adaptive estimation; Gaussian prior; Hilbert scale; Linear inverse problem; Nonparametric Bayesian estimation; Posterior contraction rate; Random series prior; Regularity scale; White noise; POSTERIOR CONTRACTION RATES; CONVERGENCE-RATES; ADAPTIVE ESTIMATION; HILBERT SCALES; RECONSTRUCTION; DISTRIBUTIONS; FUNCTIONALS; EQUATIONS; PRIORS;
D O I
10.1214/19-AIHP1029
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We obtain rates of contraction of posterior distributions in inverse problems defined by scales of smoothness classes. We derive abstract results for general priors, with contraction rates determined by Galerkin approximation. The rate depends on the amount of prior concentration near the true function and the prior mass of functions with inferior Galerkin approximation. We apply the general result to non-conjugate series priors, showing that these priors give near optimal and adaptive recovery in some generality, Gaussian priors, and mixtures of Gaussian priors, where the latter are also shown to be near optimal and adaptive. The proofs are based on general testing and approximation arguments, without explicit calculations on the posterior distribution. We are thus not restricted to priors based on the singular value decomposition of the operator. We illustrate the results with examples of inverse problems resulting from differential equations.
引用
收藏
页码:2081 / 2107
页数:27
相关论文
共 50 条
  • [41] On a sufficient condition for regularizability of linear inverse problems
    L. D. Menikhes
    Mathematical Notes, 2007, 82 : 212 - 215
  • [42] Regularity for multi-phase problems at nearly linear growth
    De Filippis, Filomena
    Piccinini, Mirco
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 410 : 832 - 868
  • [43] SPARSITY PROMOTING HYBRID SOLVERS FOR HIERARCHICAL BAYESIAN INVERSE PROBLEMS
    Calvetti, Daniela
    Pragliola, Monica
    Somersalo, Erkki
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (06) : A3761 - A3784
  • [44] A hierarchical Bayesian-MAP approach to inverse problems in imaging
    Raj, Raghu G.
    INVERSE PROBLEMS, 2016, 32 (07)
  • [45] Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems
    Lu, Fei
    Morzfeld, Matthias
    Tu, Xuemin
    Chorin, Alexandre J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 282 : 138 - 147
  • [46] Bayesian spatial modelling for high dimensional seismic inverse problems
    Zhang, Ran
    Czado, Claudia
    Sigloch, Karin
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2016, 65 (02) : 187 - 213
  • [47] ASPIRE: iterative amortized posterior inference for Bayesian inverse problems
    Orozco, Rafael
    Siahkoohi, Ali
    Louboutin, Mathias
    Herrmann, Felix J.
    INVERSE PROBLEMS, 2025, 41 (04)
  • [48] SOLVING FOURIER PHASE RETRIEVAL WITH A REFERENCE IMAGE AS A SEQUENCE OF LINEAR INVERSE PROBLEMS
    Arab, Fahimeh
    Asif, M. Salman
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 2853 - 2857
  • [49] MOROZOV'S PRINCIPLE FOR THE AUGMENTED LAGRANGIAN METHOD APPLIED TO LINEAR INVERSE PROBLEMS
    Frick, Klaus
    Lorenz, Dirk A.
    Resmerita, Elena
    MULTISCALE MODELING & SIMULATION, 2011, 9 (04) : 1528 - 1548
  • [50] CONSTRAINED LINEAR-QUADRATIC CONTROL PROBLEMS OVER TIME SCALES AND WEAK NORMALITY
    Zeidan, Vera
    DYNAMIC SYSTEMS AND APPLICATIONS, 2017, 26 (3-4): : 627 - 662