Bayesian linear inverse problems in regularity scales

被引:12
|
作者
Gugushvili, Shota [1 ]
van der Vaart, Aad [2 ]
Yan, Dong [2 ]
机构
[1] Wageningen Univ & Res, Biometris, Wageningen, Netherlands
[2] Leiden Univ, Math Inst, Leiden, Netherlands
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2020年 / 56卷 / 03期
基金
欧洲研究理事会;
关键词
Adaptive estimation; Gaussian prior; Hilbert scale; Linear inverse problem; Nonparametric Bayesian estimation; Posterior contraction rate; Random series prior; Regularity scale; White noise; POSTERIOR CONTRACTION RATES; CONVERGENCE-RATES; ADAPTIVE ESTIMATION; HILBERT SCALES; RECONSTRUCTION; DISTRIBUTIONS; FUNCTIONALS; EQUATIONS; PRIORS;
D O I
10.1214/19-AIHP1029
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We obtain rates of contraction of posterior distributions in inverse problems defined by scales of smoothness classes. We derive abstract results for general priors, with contraction rates determined by Galerkin approximation. The rate depends on the amount of prior concentration near the true function and the prior mass of functions with inferior Galerkin approximation. We apply the general result to non-conjugate series priors, showing that these priors give near optimal and adaptive recovery in some generality, Gaussian priors, and mixtures of Gaussian priors, where the latter are also shown to be near optimal and adaptive. The proofs are based on general testing and approximation arguments, without explicit calculations on the posterior distribution. We are thus not restricted to priors based on the singular value decomposition of the operator. We illustrate the results with examples of inverse problems resulting from differential equations.
引用
收藏
页码:2081 / 2107
页数:27
相关论文
共 50 条
  • [21] Low-Rank Independence Samplers in Hierarchical Bayesian Inverse Problems
    Brown, D. Andrew
    Saibaba, Arvind
    Vallelian, Sarah
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2018, 6 (03): : 1076 - 1100
  • [22] REGULARIZING PRIORS FOR LINEAR INVERSE PROBLEMS
    Florens, Jean-Pierre
    Simoni, Anna
    ECONOMETRIC THEORY, 2016, 32 (01) : 71 - 121
  • [23] The Convex Geometry of Linear Inverse Problems
    Chandrasekaran, Venkat
    Recht, Benjamin
    Parrilo, Pablo A.
    Willsky, Alan S.
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2012, 12 (06) : 805 - 849
  • [24] Linear inverse problems with Hessian-Schatten total variation
    Ambrosio, Luigi
    Aziznejad, Shayan
    Brena, Camillo
    Unser, Michael
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (01)
  • [25] Sharp Time-Data Tradeoffs for Linear Inverse Problems
    Oymak, Samet
    Recht, Benjamin
    Soltanolkotabi, Mahdi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (06) : 4129 - 4158
  • [26] Maximum a posteriori probability estimates in infinite-dimensional Bayesian inverse problems
    Helin, T.
    Burger, M.
    INVERSE PROBLEMS, 2015, 31 (08)
  • [27] A posterior contraction for Bayesian inverse problems in Banach spaces
    Chen, De-Han
    Li, Jingzhi
    Zhang, Ye
    INVERSE PROBLEMS, 2024, 40 (04)
  • [28] Laplace priors and spatial inhomogeneity in Bayesian inverse problems
    Agapiou, Sergios
    Wang, Sven
    BERNOULLI, 2024, 30 (02) : 878 - 910
  • [29] BAYESIAN INVERSE PROBLEMS WITH NON-COMMUTING OPERATORS
    Mathe, Peter
    MATHEMATICS OF COMPUTATION, 2019, 88 (320) : 2897 - 2912
  • [30] Bayesian inverse problems with non-conjugate priors
    Ray, Kolyan
    ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 2516 - 2549