Variational Inference for Dirichlet Process Mixtures

被引:919
作者
Blei, David M. [1 ]
Jordan, Michael I. [2 ]
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Pittsburgh, PA 15213 USA
[2] Univ Calif Berkeley, Dept Comp Sci & Stat, Berkeley, CA 94720 USA
来源
BAYESIAN ANALYSIS | 2006年 / 1卷 / 01期
关键词
Dirichlet processes; hierarchical models; variational inference; image processing; Bayesian computation;
D O I
10.1214/06-BA104
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Dirichlet process (DP) mixture models are the cornerstone of non-parametric Bayesian statistics, and the development of Monte-Carlo Markov chain (MCMC) sampling methods for DP mixtures has enabled the application of non-parametric Bayesian methods to a variety of practical data analysis problems. However, MCMC sampling can be prohibitively slow,and it is important to explore alternatives.One class of alternatives is provided by variational methods, a class of deterministic algorithms that convert inference problems into optimization problems (Opper and Saad 2001; Wainwright and Jordan 2003).Thus far, variational methods have mainly been explored in the parametric setting, in particular within the formalism of the exponential family (Attias2000; Ghahramani and Beal 2001; Bleietal .2003).In this paper, we present a variational inference algorithm for DP mixtures.We present experiments that compare the algorithm to Gibbs sampling algorithms for DP mixtures of Gaussians and present an application to a large-scale image analysis problem.
引用
收藏
页码:121 / 143
页数:23
相关论文
共 50 条
  • [31] Hierarchical Dirichlet and Pitman-Yor process mixtures of shifted-scaled Dirichlet distributions for proportional data modeling
    Baghdadi, Ali
    Manouchehri, Narges
    Patterson, Zachary
    Fan, Wentao
    Bouguila, Nizar
    COMPUTATIONAL INTELLIGENCE, 2022, 38 (06) : 2095 - 2115
  • [32] Stochastic variational inference for scalable non-stationary Gaussian process regression
    Ionut Paun
    Dirk Husmeier
    Colin J. Torney
    Statistics and Computing, 2023, 33
  • [33] Stochastic variational inference for scalable non-stationary Gaussian process regression
    Paun, Ionut
    Husmeier, Dirk
    Torney, Colin J.
    STATISTICS AND COMPUTING, 2023, 33 (02)
  • [34] A Variational Inference-Based Heteroscedastic Gaussian Process Approach for Simulation Metamodeling
    Wang, Wenjing
    Chen, Nan
    Chen, Xi
    Yang, Linchang
    ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2019, 29 (01):
  • [35] Unsupervised outlier detection using random subspace and subsampling ensembles of Dirichlet process mixtures
    Kim, Dongwook
    Park, Juyeon
    Chung, Hee Cheol
    Jeong, Seonghyun
    PATTERN RECOGNITION, 2024, 156
  • [36] Variational inference at glacier scale
    Brinkerhoff, Douglas J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 459
  • [37] Fast copula variational inference
    Chi, Jinjin
    Ouyang, Jihong
    Zhang, Ang
    Wang, Xinhua
    Li, Ximing
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2022, 34 (02) : 295 - 310
  • [38] Variational Inference in Nonconjugate Models
    Wang, Chong
    Blei, David M.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 1005 - 1031
  • [39] MaxEntropy Pursuit Variational Inference
    Egorov, Evgenii
    Neklydov, Kirill
    Kostoev, Ruslan
    Burnaev, Evgeny
    ADVANCES IN NEURAL NETWORKS - ISNN 2019, PT I, 2019, 11554 : 409 - 417
  • [40] Accelerated Stochastic Variational Inference
    Hu, Pingbo
    Weng, Yang
    2019 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2019), 2019, : 1275 - 1282