Variational Inference for Dirichlet Process Mixtures

被引:919
作者
Blei, David M. [1 ]
Jordan, Michael I. [2 ]
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Pittsburgh, PA 15213 USA
[2] Univ Calif Berkeley, Dept Comp Sci & Stat, Berkeley, CA 94720 USA
来源
BAYESIAN ANALYSIS | 2006年 / 1卷 / 01期
关键词
Dirichlet processes; hierarchical models; variational inference; image processing; Bayesian computation;
D O I
10.1214/06-BA104
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Dirichlet process (DP) mixture models are the cornerstone of non-parametric Bayesian statistics, and the development of Monte-Carlo Markov chain (MCMC) sampling methods for DP mixtures has enabled the application of non-parametric Bayesian methods to a variety of practical data analysis problems. However, MCMC sampling can be prohibitively slow,and it is important to explore alternatives.One class of alternatives is provided by variational methods, a class of deterministic algorithms that convert inference problems into optimization problems (Opper and Saad 2001; Wainwright and Jordan 2003).Thus far, variational methods have mainly been explored in the parametric setting, in particular within the formalism of the exponential family (Attias2000; Ghahramani and Beal 2001; Bleietal .2003).In this paper, we present a variational inference algorithm for DP mixtures.We present experiments that compare the algorithm to Gibbs sampling algorithms for DP mixtures of Gaussians and present an application to a large-scale image analysis problem.
引用
收藏
页码:121 / 143
页数:23
相关论文
共 50 条
  • [21] Approximation of laws of random probabilities by mixtures of Dirichlet distributions with applications to nonparametric Bayesian inference
    Regazzini, E
    Sazonov, VV
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2000, 45 (01) : 93 - 110
  • [22] Variational Bayesian Inference for Finite Inverted Dirichlet Mixture Model and Its Application to Object Detection
    Lai Yuping
    Ping Yuan
    He Wenda
    Wang Baocheng
    Wang Jingzhong
    Zhang Xiufeng
    CHINESE JOURNAL OF ELECTRONICS, 2018, 27 (03) : 603 - 610
  • [23] Efficient EM-variational inference for nonparametric Hawkes process
    Zhou, Feng
    Luo, Simon
    Li, Zhidong
    Fan, Xuhui
    Wang, Yang
    Sowmya, Arcot
    Chen, Fang
    STATISTICS AND COMPUTING, 2021, 31 (04)
  • [24] Efficient EM-variational inference for nonparametric Hawkes process
    Feng Zhou
    Simon Luo
    Zhidong Li
    Xuhui Fan
    Yang Wang
    Arcot Sowmya
    Fang Chen
    Statistics and Computing, 2021, 31
  • [25] Variational Inference for Infinite Mixtures of Gaussian Processes With Applications to Traffic Flow Prediction
    Sun, Shiliang
    Xu, Xin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2011, 12 (02) : 466 - 475
  • [26] VARIATIONAL INFERENCE FOR NONPARAMETRIC SUBSPACE DICTIONARY LEARNING WITH HIERARCHICAL BETA PROCESS
    Li, Shaoyang
    Tao, Xiaoming
    Lu, Jianhua
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 2691 - 2695
  • [27] CLASSIFICATION OF MULTIPLE ANNOTATOR DATA USING VARIATIONAL GAUSSIAN PROCESS INFERENCE
    Besler, Emre
    Ruiz, Pablo
    Molina, Rafael
    Katsaggelos, Aggelos K.
    2016 24TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2016, : 2025 - 2029
  • [28] VARIATIONAL INFERENCE FOR INFINITE MIXTURES OF SPARSE GAUSSIAN PROCESSES THROUGH KL-CORRECTION
    Nguyen, T. N. A.
    Bouzerdourn, A.
    Phung, S. L.
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 2579 - 2583
  • [29] Stochastic Variational Inference
    Hoffman, Matthew D.
    Blei, David M.
    Wang, Chong
    Paisley, John
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 1303 - 1347
  • [30] Advances in Variational Inference
    Zhang, Cheng
    Butepage, Judith
    Kjellstrom, Hedvig
    Mandt, Stephan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (08) : 2008 - 2026