Variational Inference for Dirichlet Process Mixtures

被引:919
作者
Blei, David M. [1 ]
Jordan, Michael I. [2 ]
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Pittsburgh, PA 15213 USA
[2] Univ Calif Berkeley, Dept Comp Sci & Stat, Berkeley, CA 94720 USA
来源
BAYESIAN ANALYSIS | 2006年 / 1卷 / 01期
关键词
Dirichlet processes; hierarchical models; variational inference; image processing; Bayesian computation;
D O I
10.1214/06-BA104
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Dirichlet process (DP) mixture models are the cornerstone of non-parametric Bayesian statistics, and the development of Monte-Carlo Markov chain (MCMC) sampling methods for DP mixtures has enabled the application of non-parametric Bayesian methods to a variety of practical data analysis problems. However, MCMC sampling can be prohibitively slow,and it is important to explore alternatives.One class of alternatives is provided by variational methods, a class of deterministic algorithms that convert inference problems into optimization problems (Opper and Saad 2001; Wainwright and Jordan 2003).Thus far, variational methods have mainly been explored in the parametric setting, in particular within the formalism of the exponential family (Attias2000; Ghahramani and Beal 2001; Bleietal .2003).In this paper, we present a variational inference algorithm for DP mixtures.We present experiments that compare the algorithm to Gibbs sampling algorithms for DP mixtures of Gaussians and present an application to a large-scale image analysis problem.
引用
收藏
页码:121 / 143
页数:23
相关论文
共 50 条
  • [1] DIFFERENCE-OF-CONVEX OPTIMIZATION FOR VARIATIONAL KL-CORRECTED INFERENCE IN DIRICHLET PROCESS MIXTURES
    Bonnevie, Rasmus
    Schmidt, Mikkel N.
    Morup, Morten
    2017 IEEE 27TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2017,
  • [2] Variational Bayesian inference for a Dirichlet process mixture of beta distributions and application
    Lai, Yuping
    Ping, Yuan
    Xiao, Ke
    Hao, Bin
    Zhang, Xiufeng
    NEUROCOMPUTING, 2018, 278 : 23 - 33
  • [3] Mixtures of Dirichlet processes according to a Dirichlet process
    Carota, C
    AMERICAN STATISTICAL ASSOCIATION - 1996 PROCEEDINGS OF THE SECTION ON BAYESIAN STATISTICAL SCIENCE, 1996, : 310 - 313
  • [4] Dirichlet process mixture model based nonparametric Bayesian modeling and variational inference
    Fei, Zhengshun
    Liu, Kangling
    Huang, Bingqiang
    Zheng, Yongping
    Xiang, Xinjian
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 3048 - 3051
  • [5] Stochastic variational inference for clustering short text data with finite mixtures of Dirichlet-Multinomial distributions
    Bilancia, Massimo
    Nigri, Andrea
    Magro, Samuele
    STATISTICAL PAPERS, 2025, 66 (04)
  • [6] Bayesian estimation of Dirichlet mixture model with variational inference
    Ma, Zhanyu
    Rana, Pravin Kumar
    Taghia, Jalil
    Flierl, Markus
    Leijon, Arne
    PATTERN RECOGNITION, 2014, 47 (09) : 3143 - 3157
  • [7] Online Learning of a Dirichlet Process Mixture of Beta-Liouville Distributions via Variational Inference
    Fan, Wentao
    Bouguila, Nizar
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2013, 24 (11) : 1850 - 1862
  • [8] Stochastic Collapsed Variational Bayesian Inference for Latent Dirichlet Allocation
    Foulds, James
    Boyles, Levi
    DuBois, Christopher
    Smyth, Padhraic
    Welling, Max
    19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), 2013, : 446 - 454
  • [9] Mean field inference for the Dirichlet process mixture model
    Zobay, O.
    ELECTRONIC JOURNAL OF STATISTICS, 2009, 3 : 507 - 545
  • [10] Oil Spill Detection in SAR Images Using Online Extended Variational Learning of Dirichlet Process Mixtures of Gamma Distributions
    Almulihi, Ahmed
    Alharithi, Fahd
    Bourouis, Sami
    Alroobaea, Roobaea
    Pawar, Yogesh
    Bouguila, Nizar
    REMOTE SENSING, 2021, 13 (15)