State complexity of operations on two-way finite automata over a unary alphabet

被引:12
作者
Kunc, Michal [2 ]
Okhotin, Alexander [1 ]
机构
[1] Univ Turku, Dept Math, FI-20014 Turku, Finland
[2] Masaryk Univ, Dept Math, Brno, Czech Republic
基金
芬兰科学院;
关键词
Finite automata; Two-way automata; Regular languages; Unary languages; State complexity; Landau's function; LANGUAGES;
D O I
10.1016/j.tcs.2012.04.010
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The paper determines the number of states in two-way deterministic finite automata (2DFA) over a one-letter alphabet sufficient and in the worst case necessary to represent the results of basic language-theoretic operations on 2DFAs with a certain number of states. It is proved that (i) intersection of an m-state 2DFA and an n-state 2DFA requires between m + n and m + n + 1 states; (ii) union of an m-state 2DFA and an n-state 2DFA, between m + n and 2m + n + 4 states; (iii) Kleene star of an n-state 2DFA, (g(n) + O(n))2 states, where g(n) = e((l+0(1))root nlnn) is the maximum value of lcm(p(1), ..., P-k) for Sigma p(i) <= n, known as Landau's function; (iv) k-th power of an n-state 2DFA, between (k - 1)g(n) - k and k(g(n) + n) states; (v) concatenation of an m-state 2DFA and an n-state 2DFA, e((1+0(1))root(m+n) ln(m+n)) states. It is furthermore demonstrated that the Kleene star of a two-way nondeterministic automaton (2NFA) with n states requires (-)(g(n)) states in the worst case, its k-th power requires (k.g(n))((-)(1)) states, and the concatenation of an m-state 2NFA and an n-state 2NFA, e((-)(root(m+n) In(m+n))) states. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:106 / 118
页数:13
相关论文
共 22 条
[1]  
[Anonymous], 1970, Soviet Mathematics Doklady
[2]  
Chrobak M, 2003, THEOR COMPUT SCI, V302, P497, DOI 10.1016/S0304-3975(03)00136-1
[3]   FINITE AUTOMATA AND UNARY LANGUAGES [J].
CHROBAK, M .
THEORETICAL COMPUTER SCIENCE, 1986, 47 (02) :149-158
[4]   State complexity of power [J].
Domaratzki, Michael ;
Okhotin, Alexander .
THEORETICAL COMPUTER SCIENCE, 2009, 410 (24-25) :2377-2392
[6]   Converting two-way nondeterministic unary automata into simpler automata [J].
Geffert, V ;
Mereghetti, C ;
Pighizzini, G .
THEORETICAL COMPUTER SCIENCE, 2003, 295 (1-3) :189-203
[7]   Complementing two-way finite automata [J].
Geffert, Viliam ;
Mereghetti, Carlo ;
Pighizzini, Giovanni .
INFORMATION AND COMPUTATION, 2007, 205 (08) :1173-1187
[8]  
Holzer M., 2003, International Journal of Foundations of Computer Science, V14, P1087, DOI 10.1142/S0129054103002199
[9]  
Jirásková G, 2008, LECT NOTES COMPUT SC, V5257, P443, DOI 10.1007/978-3-540-85780-8_35
[10]  
Kapoutsis C, 2005, LECT NOTES COMPUT SC, V3618, P544