NONLINEAR *-JORDAN TRIPLE DERIVATIONS ON VON NEUMANN ALGEBRAS

被引:53
作者
Zhao, Fangfang [1 ]
Li, Chanjing [1 ]
机构
[1] Shandong Normal Univ, Sch Math Sci, Jinan 250014, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
(*)-Jordan triple derivations; derivations; von Neumann algebras; JORDAN ASTERISK-DERIVATIONS; OPERATOR-ALGEBRAS; INVOLUTION; PRODUCT; RINGS; MAPS;
D O I
10.1515/ms-2017-0089
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B(H) be the algebra of all bounded linear operators on a complex Hilbert space H and A subset of B(H) be a von Neumann algebra with no central summands of type I-1. For A, B is an element of A, define by A center dot B = AB + BA* a new product of A and B. In this article, it is proved that a map Phi: A -> B(H) satisfies Phi (A center dot B center dot C)=Phi(A)center dot B center dot C+A center dot Phi(B)center dot C+A center dot B center dot Phi(C) for all A,B,C is an element of A if and only if Phi is an additive (*)-derivation. (C) 2017 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:163 / 170
页数:8
相关论文
共 15 条
[1]   Maps preserving products XY-YX* on von Neumann algebras [J].
Bai, Zhaofang ;
Du, Shuanping .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 386 (01) :103-109
[2]  
Bresar M, 2000, PUBL MATH-DEBRECEN, V57, P121
[3]   Maps preserving product XY-YX* on factor von Neumann algebras [J].
Cui, Jianlian ;
Li, Chi-Kwong .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (5-7) :833-842
[4]   Nonlinear maps preserving Jordan *-products [J].
Dai, Liqing ;
Lu, Fangyan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (01) :180-188
[5]  
Fosner M., 2002, SE ASIAN B MATH, P27, DOI DOI 10.1007/S100120200023
[6]   Strong Skew Commutativity Preserving Maps on Rings with Involution [J].
Li, Chang Jing ;
Chen, Quan Yuan .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (06) :745-752
[7]   Non-linear ξ-Jordan *-derivations on von Neumann algebras [J].
Li, Changjing ;
Lu, Fangyan ;
Fang, Xiaochun .
LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (04) :466-473
[8]   Nonlinear mappings preserving product XY plus YX* on factor von Neumann algebras [J].
Li, Changjing ;
Lu, Fangyan ;
Fang, Xiaochun .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) :2339-2345
[9]   LIE HOMOMORPHISMS OF OPERATOR ALGEBRAS [J].
MIERS, CR .
PACIFIC JOURNAL OF MATHEMATICS, 1971, 38 (03) :717-&
[10]   A condition for a subspace of B(H) to be an ideal [J].
Molnar, L .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 235 (235) :229-234