Model for High-Throughput Screening of Multitarget Drugs in Chemical Neurosciences: Synthesis, Assay, and Theoretic Study of Rasagiline Carbamates

被引:58
作者
Alonso, Nerea [5 ]
Caamano, Olga [5 ]
Romero-Duran, Francisco J. [5 ]
Luan, Feng [1 ,2 ]
Cordeiro, M. Natalia D. S. [1 ]
Yanez, Matilde [3 ]
Gonzalez-Diaz, Humberto [1 ,4 ]
Garcia-Mera, Xerardo [5 ]
机构
[1] Univ Porto, REQUITME, Dept Chem & Biochem, P-4169007 Oporto, Portugal
[2] Yantai Univ, Dept Appl Chem, Yantai 264005, Peoples R China
[3] USC, Fac Pharm, Dept Pharmacol, Santiago De Compostela 15782, Spain
[4] Basque Fdn Sci, IKERBASQUE, Bilbao 48011, Spain
[5] Univ Santiago de Compostela, Fac Pharm, Dept Organ Chem, Santiago De Compostela 15782, Spain
关键词
Neurodegenerative diseases; drug-target networks; rasagiline derivatives; CHEMBL; multitarget QSAR; multiplexing assays; high-throughput screening; moving averages; spectral moments; Markov chains; IN-SILICO DISCOVERY; TOPS-MODE; ALLOSTERIC MODULATORS; TOMOCOMD-CARDD; QSAR MODELS; TOXICOLOGICAL PROFILES; MEDICINAL CHEMISTRY; MARCH-INSIDE; WEB SERVER; DESIGN;
D O I
10.1021/cn400111n
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The disappointing results obtained in recent clinical trials renew the interest in experimental/computational techniques for the discovery of neuroprotective drugs. In this context, multitarget or multiplexing QSAR models (mt-QSAR/mx-QSAR) may help to predict neurotoxicity/neuroprotective effects of drugs in multiple assays, on drug targets, and in model organisms. In this work, we study a data set downloaded from CHEMBL; each data point (>8000) contains the values of one out of 37 possible measures of activity, 493 assays, 169 molecular or cellular targets, and 11 different organisms (including human) for a given compound. In this work, we introduce the first mx-QSAR model for neurotoxicity/neuroprotective effects of drugs based on the MARCH-INSIDE (MI) method. First, we used MI to calculate the stochastic spectral moments (structural descriptors) of all compounds. Next, we found a model that classified correctly 2955 out of 3548 total cases in the training and validation series with Accuracy, Sensitivity, and Specificity values > 80%. The model also showed excellent results in Computational-Chemistry simulations of High-Throughput Screening (CCHTS) experiments, with accuracy = 90.6% for 4671 positive cases. Next, we reported the synthesis, characterization, and experimental assays of new rasagiline derivatives. We carried out three different experimental tests: assay (1) in the absence of neurotoxic agents, assay (2) in the presence of glutamate, and assay (3) in the presence of H2O2. Compounds 11 with 27.4%, 8 with 11.6%, and 9 with 15.4% showed the highest neuroprotective effects in assays (1), (2), and (3), respectively. After that, we used the mx-QSAR model to carry out a CCHTS of the new compounds in >400 unique pharmacological tests not carried out experimentally. Consequently, this model may become a promising auxiliary tool for the discovery of new drugs for the treatment of neurodegenerative diseases.
引用
收藏
页码:1393 / 1403
页数:11
相关论文
共 69 条
[41]   Ligand-Based Computer-Aided Discovery of Tyrosinase Inhibitors. Applications of the TOMOCOMD-CARDD Method to the Elucidation of New Compounds [J].
Marrero-Ponce, Yovani ;
Casanola-Martin, Gerardo M. ;
Khan, Mahmud Tareq Hassan ;
Torrens, Francisco ;
Rescigno, Antonio ;
Abad, Concepcion .
CURRENT PHARMACEUTICAL DESIGN, 2010, 16 (24) :2601-2624
[42]   Biology of Mitochondria in Neurodegenerative Diseases [J].
Martin, Lee J. .
MOLECULAR BIOLOGY OF NEURODEGENERATIVE DISEASES, 2012, 107 :355-415
[43]   Artificial Intelligence Techniques for Colorectal Cancer Drug Metabolism: Ontologies and Complex Networks [J].
Martinez-Romero, Marcos ;
Vazquez-Naya, Jose M. ;
Rabunal, Juan R. ;
Pita-Fernandez, Salvador ;
Macenlle, Ramiro ;
Castro-Alvarino, Javier ;
Lopez-Roses, Leopoldo ;
Ulla, Jose L. ;
Martinez-Calvo, Antonio V. ;
Vazquez, Santiago ;
Pereira, Javier ;
Porto-Pazos, Ana B. ;
Dorado, Julian ;
Pazos, Alejandro ;
Munteanu, Cristian R. .
CURRENT DRUG METABOLISM, 2010, 11 (04) :347-368
[44]   Using the TOPS-MODE approach to fit multi-target QSAR models for tyrosine kinases inhibitors [J].
Marzaro, Giovanni ;
Chilin, Adriana ;
Guiotto, Adriano ;
Uriarte, Eugenio ;
Brun, Paola ;
Castagliuolo, Ignazio ;
Tonus, Francesca ;
Gonzalez-Diaz, Humberto .
EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2011, 46 (06) :2185-2192
[45]   Allosteric Modulators for the Treatment of Schizophrenia: Targeting Glutamatergic Networks [J].
Menniti, Frank S. ;
Lindsley, Craig W. ;
Conn, P. Jeffrey ;
Pandit, Jayvardhan ;
Zagouras, Panayiotis ;
Volkmann, Robert A. .
CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2013, 13 (01) :26-54
[46]   Mining the ChEMBL Database: An Efficient Chemoinformatics Workflow for Assembling an Ion Channel-Focused Screening Library [J].
Mok, N. Yi ;
Brenk, Ruth .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2011, 51 (10) :2449-2454
[47]   Glycogen Synthase Kinase-3 Inhibitors as Potent Therapeutic Agents for the Treatment of Parkinson Disease. [J].
Morales-Garcia, J. A. ;
Susin, C. ;
Alonso-Gil, S. ;
Perez, D. I. ;
Palomo, V. ;
Perez, C. ;
Conde, S. ;
Santos, A. ;
Gil, C. ;
Martinez, A. ;
Perez-Castillo, A. .
ACS CHEMICAL NEUROSCIENCE, 2013, 4 (02) :350-360
[49]   Identification of Metabotropic Glutamate Receptor Subtype 5 Potentiators Using Virtual High-Throughput Screening [J].
Mueller, Ralf ;
Rodriguez, Alice L. ;
Dawson, Eric S. ;
Butkiewicz, Mariusz ;
Nguyen, Thuy T. ;
Oleszkiewicz, Stephen ;
Bleckmann, Annalen ;
Weaver, C. David ;
Lindsley, Craig W. ;
Conn, P. Jeffrey ;
Meiler, Jens .
ACS CHEMICAL NEUROSCIENCE, 2010, 1 (04) :288-305
[50]   How to Increase the Safety and Efficacy of Compounds against Neurodegeneration? A Multifunctional Approach [J].
Nurisso, Alessandra ;
Simoes-Pires, Claudia ;
Martel, Sophie ;
Cressend, Delphine ;
Guillot, Amandine ;
Carrupt, Pierre-Alain .
CHIMIA, 2012, 66 (05) :286-290