Mechanism of reaction of RNA-dependent RNA polymerase from SARS-CoV-2

被引:22
作者
Aranda, Juan [1 ]
Wieczor, Milosz [1 ,2 ]
Terrazas, Montserrat [1 ,3 ]
Brun-Heath, Isabelle [1 ]
Orozco, Modesto [1 ,4 ]
机构
[1] Barcelona Inst Sci & Technol, Inst Res Biomed IRB Barcelona, Baldiri Reixac 10, Barcelona 08028, Spain
[2] Gdansk Univ Technol, Dept Phys Chem, Narutowicza 11-12, PL-80233 Gdansk, Poland
[3] Univ Barcelona, Dept Inorgan & Organ Chem, Sect Organ Chem, IBUB, Marti & Franques 1-11, Barcelona 08028, Spain
[4] Univ Barcelona, Dept Bioquim & Biomed, Avinguda Diagonal 645, Barcelona 08028, Spain
来源
CHEM CATALYSIS | 2022年 / 2卷 / 05期
基金
欧洲研究理事会;
关键词
REVERSIBLE COVALENT INHIBITION; FORCE-FIELD; STRUCTURAL BASIS; TRIGGER LOOP; DYNAMICS; REPLICATION; REMDESIVIR; PARAMETERS; NITRILE; MOTION;
D O I
10.1016/j.checat.2022.03.019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We combine molecular dynamics, statistical mechanics, and hybrid quantum mechanics/molecular mechanics simulations to describe mechanistically the severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2) RNA-dependent RNA polymerase (RdRp). Our study analyzes the binding mode of both natural triphosphate substrates as well as remdesivir triphosphate (the active form of drug), which is bound preferentially over ATP by RdRp while being poorly recognized by human RNA polymerase II (RNA Pol II). A comparison of incorporation rates between natural and antiviral nucleotides shows that remdesivir is incorporated more slowly into the nascent RNA compared with ATP, leading to an RNA duplex that is structurally very similar to an unmodified one, arguing against the hypothesis that remdesivir is a competitive inhibitor of ATP. We characterize the entire mechanism of reaction, finding that viral RdRp is highly processive and displays a higher catalytic rate of incorporation than human RNA Pol II. Overall, our study provides the first detailed explanation of the replication mechanism of RdRp.
引用
收藏
页码:1084 / 1099
页数:16
相关论文
共 77 条
[1]   Magnesium Ion-Water Coordination and Exchange in Biomolecular Simulations [J].
Allner, Olof ;
Nilsson, Lennart ;
Villa, Alessandra .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (04) :1493-1502
[2]  
[Anonymous], 2018, NCT03719586
[3]   Structural basis for RNA replication by the hepatitis C virus polymerase [J].
Appleby, Todd C. ;
Perry, Jason K. ;
Murakami, Eisuke ;
Barauskas, Ona ;
Feng, Joy ;
Cho, Aesop ;
Fox, David, III ;
Wetmore, Diana R. ;
McGrath, Mary E. ;
Ray, Adrian S. ;
Sofia, Michael J. ;
Swaminathan, S. ;
Edwards, Thomas E. .
SCIENCE, 2015, 347 (6223) :771-775
[4]  
Aranda J, 2020, bioRxiv, DOI [10.1101/2020.06.21.163592, 10.1101/2020.06.21.163592, DOI 10.1101/2020.06.21.163592]
[5]   An artificial DNAzyme RNA ligase shows a reaction mechanism resembling that of cellular polymerases [J].
Aranda, Juan ;
Terrazas, Montserrat ;
Gomez, Hansel ;
Villegas, Nuria ;
Orozco, Modesto .
NATURE CATALYSIS, 2019, 2 (06) :544-552
[6]   EFFICIENT ESTIMATION OF FREE-ENERGY DIFFERENCES FROM MONTE-CARLO DATA [J].
BENNETT, CH .
JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 22 (02) :245-268
[7]   Mechanisms of DNA Polymerases [J].
Berdis, Anthony J. .
CHEMICAL REVIEWS, 2009, 109 (07) :2862-2879
[8]   Structure of transcribing mammalian RNA polymerase II [J].
Bernecky, Carrie ;
Herzog, Franz ;
Baumeister, Wolfgang ;
Plitzko, Juergen M. ;
Cramer, Patrick .
NATURE, 2016, 529 (7587) :551-+
[9]   Predicting the Reactivity of Nitrile-Carrying Compounds with Cysteine: A Combined Computational and Experimental Study [J].
Berteotti, Anna ;
Vacondio, Federica ;
Lodola, Alessio ;
Bassi, Michele ;
Silva, Claudia ;
Mor, Marco ;
Cavalli, Andrea .
ACS MEDICINAL CHEMISTRY LETTERS, 2014, 5 (05) :501-505
[10]   Remdesivir is a delayed translocation inhibitor of SARS-CoV-2 replication [J].
Bravo, Jack P. K. ;
Dangerfield, Tyler L. ;
Taylor, David W. ;
Johnson, Kenneth A. .
MOLECULAR CELL, 2021, 81 (07) :1548-+