The central-upwind finite-volume method for atmospheric numerical modeling

被引:3
作者
Nair, Ramachandran D. [1 ]
Katta, Kiran K. [2 ]
机构
[1] Natl Ctr Atmospher Res, Inst Math Appl Geosci, 1850 Table Mesa Dr, Boulder, CO 80305 USA
[2] Univ Texas El Paso, El Paso, TX 79902 USA
来源
RECENT ADVANCES IN SCIENTIFIC COMPUTING AND APPLICATIONS | 2013年 / 586卷
关键词
Central-upwind; finite-volume; shallow-water model; cubed-sphere; WENO method; non-hydrostatic Euler solver; HYPERBOLIC CONSERVATION-LAWS; SHALLOW-WATER MODEL; CUBED-SPHERE; EQUATIONS; APPROXIMATIONS; SCHEMES;
D O I
10.1090/conm/586/11668
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A semi-discretized central-upwind finite-volume (CFV) scheme has been developed for atmospheric modeling applications. The non-oscillatory property of the scheme is achieved by employing high-order weighted essentially non-oscillatory (WENO) reconstruction method, and time integration relies on explicit Runge-Kutta method. The WENO reconstruction is fifth-order accurate and implemented in a dimension-split manner, and a fully 2D fourth-order reconstruction is also considered for comparison. The CFV scheme is computationally efficient and employs a compact non-staggered computational stencil with an optional positivity-preserving filter. The scheme has been validated for benchmark advection tests on the cubed-sphere. A global shallow-water model and a 2D non-hydrostatic Euler solver are also developed based on the same central finite-volume scheme.
引用
收藏
页码:277 / +
页数:3
相关论文
共 19 条
[1]   On the total variation of high-order semi-discrete central schemes for conservation laws [J].
Bryson, S ;
Levy, D .
JOURNAL OF SCIENTIFIC COMPUTING, 2006, 27 (1-3) :163-175
[2]   Shallow water model on cubed-sphere by multi-moment finite volume method [J].
Chen, Chungang ;
Xiao, Feng .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (10) :5019-5044
[3]   A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases [J].
Giraldo, F. X. ;
Restelli, M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (08) :3849-3877
[4]  
Godunov S.K., 1959, Matematiceskij sbornik, V47, P271
[5]   Strong stability-preserving high-order time discretization methods [J].
Gottlieb, S ;
Shu, CW ;
Tadmor, E .
SIAM REVIEW, 2001, 43 (01) :89-112
[6]  
Katta K., 2012, Q J ROY METEOR SOC
[7]   Central-upwind schemes for the Saint-Venant system [J].
Kurganov, A ;
Levy, D .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2002, 36 (03) :397-425
[8]   Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations [J].
Kurganov, A ;
Noelle, S ;
Petrova, G .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (03) :707-740
[9]  
Kurganov A., 2012, J COMPUT PHYS UNPUB
[10]  
Nair R. D., MON WEA REV, V133, P876