Mirror mode waves: Messengers from the coronal heating region

被引:44
作者
Russell, C. T. [1 ]
Jian, L. K. [1 ]
Luhmann, J. G. [3 ]
Zhang, T. L. [7 ]
Neubauer, F. M. [4 ]
Skoug, R. M. [6 ]
Blanco-Cano, X. [2 ]
Omidi, N. [5 ]
Cowee, M. M. [1 ]
机构
[1] Univ Calif Los Angeles, Inst Geophys & Planetary Sci, Los Angeles, CA 90095 USA
[2] Univ Nacl Autonoma Mexico, Inst Geophys, Mexico City 04510, DF, Mexico
[3] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[4] Univ Cologne, Inst Geophys, D-50923 Cologne, Germany
[5] Solana Sci, Solana Beach, CA 92075 USA
[6] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[7] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria
关键词
D O I
10.1029/2008GL034096
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
[1] An ongoing problem in heliospheric physics is the mechanism for the heating and acceleration of the solar wind. One process that has been identified as a potentially important source of energy input is ion cyclotron waves, but except for some evidence of perpendicular heating of heavy ions obtained by remote sensing, it has proven difficult to establish their overall effectiveness. We suggest that mirror mode waves in the solar wind may be a signature of the presence of these waves in the corona. Mirror mode waves and ion cyclotron waves can be cogenerated by anisotropic ion distribution functions as demonstrated by their joint growth in the low beta conditions of Saturn's inner magnetosphere. We infer from this example and from the high occurrence rates of mirror mode waves at the closest distances to the Sun probed by spacecraft that the inner corona is also replete with ion cyclotron waves. Understanding quantitatively how these two wave modes share the free energy of the corona could help us to understand the ion- cyclotron wave generation process and its role in solar wind heating and acceleration.
引用
收藏
页数:4
相关论文
共 13 条
[1]   One-dimensional hybrid simulations of obliquely propagating ion cyclotron waves: Application to ion pickup at Io [J].
Cowee, M. M. ;
Russell, C. T. ;
Strangeway, R. J. ;
Blanco-Cano, X. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2007, 112 (A6)
[2]   Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence [J].
Cranmer, Steven R. ;
van Ballegooijen, Adriaan A. ;
Edgar, Richard J. .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2007, 171 (02) :520-551
[3]   The Cassini magnetic field investigation [J].
Dougherty, MK ;
Kellock, S ;
Southwood, DJ ;
Balogh, A ;
Smith, EJ ;
Tsurutani, BT ;
Gerlach, B ;
Glassmeier, KH ;
Gleim, F ;
Russell, CT ;
Erdos, G ;
Neubauer, EM ;
Cowley, SWH .
SPACE SCIENCE REVIEWS, 2004, 114 (1-4) :331-383
[4]  
FARRIS MH, 1993, THESIS U CALIF LOS A
[5]  
Gary S. P., 1993, Theory of Space Plasma Microinstabilities
[6]   Generation of the fast solar wind: A review with emphasis on the resonant cyclotron interaction [J].
Hollweg, JV ;
Isenberg, PA .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2002, 107 (A7)
[7]   2-DIMENSIONAL SIMULATIONS OF ION ANISOTROPY INSTABILITIES IN THE MAGNETOSHEATH [J].
MCKEAN, ME ;
WINSKE, D ;
GARY, SP .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1994, 99 (A6) :11141-11153
[8]   MIRROR AND ION-CYCLOTRON ANISOTROPY INSTABILITIES IN THE MAGNETOSHEATH [J].
MCKEAN, ME ;
WINSKE, D ;
GARY, SP .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1992, 97 (A12) :19421-19432
[9]  
Porsche H., 1981, ESA SPECIAL PUBLICAT, P43
[10]   Nature of magnetic fluctuations in Saturn's middle magnetosphere [J].
Russell, C. T. ;
Leisner, J. S. ;
Arridge, C. S. ;
Dougherty, M. K. ;
Blanco-Cano, X. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2006, 111 (A12)