Nanocomposite blend gel polymer electrolyte for proton battery application

被引:33
作者
Mishra, Kuldeep [1 ]
Hashmi, S. A. [2 ]
Rai, D. K. [1 ]
机构
[1] Jaypee Inst Informat Technol, Dept Phys & Mat Sci & Engn, Noida 201307, India
[2] Univ Delhi, Dept Phys & Astrophys, Delhi 110007, India
关键词
Nanocomposite blend gel polymer electrolyte; Proton conductor; Proton battery; Energy density; ION-TRANSPORT; LITHIUM; CONDUCTIVITY; ENHANCEMENT; FABRICATION; MEMBRANES; ANODE;
D O I
10.1007/s10008-012-1926-x
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A proton-conducting nanocomposite gel polymer electrolyte (GPE) system, [35{(25 poly(methylmethacrylate) (PMMA) + 75 poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP)) + xSiO(2)} + 65{1 M NH4SCN in ethylene carbonate (EC) + propylene carbonate (PC)}], where x = 0, 1, 2, 4, 6, 8, 10, and 12, has been reported. The free standing films of the gel electrolyte are obtained by solution cast technique. Films exhibit an amorphous and porous structure as observed from X-ray diffractometry (XRD) and scanning electron microscopy (SEM) studies. Fourier transform infrared spectrophotometry (FTIR) studies indicate ion-filler-polymer interactions in the nanocomposite blend GPE. The room temperature ionic conductivity of the gel electrolyte has been measured with different silica concentrations. The maximum ionic conductivity at room temperature has been observed as 4.3 x 10(-3) S cm(-1) with 2 wt.% of SiO2 dispersion. The temperature dependence of ionic conductivity shows a typical Vogel-Tamman-Fulcher (VTF) behavior. The electrochemical potential window of the nanocomposite GPE film has been observed between -1.6 V and 1.6 V. The optimized composition of the gel electrolyte has been used to fabricate a proton battery with Zn/ZnSO4 center dot 7H(2)O anode and PbO2/V2O5 cathode. The open circuit voltage (OCV) of the battery has been obtained as 1.55 V. The highest energy density of the cell has been obtained as 6.11 Wh kg(-1) for low current drain. The battery shows rechargeability up to 3 cycles and thereafter, its discharge capacity fades away substantially.
引用
收藏
页码:785 / 793
页数:9
相关论文
共 44 条
[1]   Electrochemical cell performance studies on all-solid-state battery using nano-composite polymer electrolyte membrane [J].
Agrawal, R. C. ;
Hashmi, S. A. ;
Pandey, G. P. .
IONICS, 2007, 13 (05) :295-298
[2]  
Agrawal R. C., 2008, J PHYS D, V41
[3]   Effect of nano γ-Al2O3 addition on ion dynamics in polymer electrolytes [J].
Ahmad, Shahzada ;
Agnihotry, S. A. .
CURRENT APPLIED PHYSICS, 2009, 9 (01) :108-114
[4]   Polyethylene oxide (PEO) ammonium sulfate ((NH4)2SO4) complexes and electrochemical cell performance [J].
Ali, AMM ;
Mohamed, NS ;
Arof, AK .
JOURNAL OF POWER SOURCES, 1998, 74 (01) :135-141
[5]  
[Anonymous], 2000, ELECTROCHEMICAL SERI
[6]   The enhancement of lithium ion dissociation in polyelectrolyte gels on the addition of ceramic nano-fillers [J].
Byrne, N ;
Efthimiadis, J ;
MacFarlane, DR ;
Forsyth, M .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (01) :127-133
[7]   Ionic conductivity enhancement of the plasticized PMMA/LiClO4 polymer nanocomposite electrolyte containing clay [J].
Chen, HW ;
Lin, TP ;
Chang, FC .
POLYMER, 2002, 43 (19) :5281-5288
[8]   Ion transport phenomena in polymeric electrolytes [J].
Ciosek, M. ;
Sannier, L. ;
Siekierski, M. ;
Golodnitsky, D. ;
Peled, E. ;
Scrosati, B. ;
Glowinkowski, S. ;
Wieczorek, W. .
ELECTROCHIMICA ACTA, 2007, 53 (04) :1409-1416
[9]   Lithium and proton conducting gel-type membranes [J].
Ciuffa, F ;
Croce, F ;
D'Epifanio, A ;
Panero, S ;
Scrosati, B .
JOURNAL OF POWER SOURCES, 2004, 127 (1-2) :53-57
[10]   Polymer electrolytes: Present, past and future [J].
Di Noto, Vito ;
Lavina, Sandra ;
Giffin, Guinevere A. ;
Negro, Enrico ;
Scrosati, Bruno .
ELECTROCHIMICA ACTA, 2011, 57 :4-13