CHECKERBOARD JULIA SETS FOR RATIONAL MAPS

被引:5
作者
Blanchard, Paul [1 ]
Cilingir, Figen [1 ]
Cuzzocreo, Daniel [1 ]
Devaney, Robert L. [1 ]
Look, Daniel M. [1 ]
Russell, Elizabeth D. [1 ]
机构
[1] Boston Univ, Dept Math, Boston, MA 02215 USA
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2013年 / 23卷 / 02期
关键词
Julia set; Mandelbrot set; symbolic dynamics;
D O I
10.1142/S0218127413300048
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the family of rational maps F-lambda(z) = z(n) + lambda/z(d), where n >= 2, d >= 1, and lambda is an element of C. We consider the case where lambda lies in the main cardioid of one of the n - 1 principal Mandelbrot sets in these families. We show that the Julia sets of these maps are always homeomorphic. However, two such maps F-lambda and F-mu are conjugate on these Julia sets only if the parameters at the centers of the given cardioids satisfy mu = nu(j(d+1))lambda or mu = nu(j(d+1))(lambda) over bar where j is an element of Z and nu is an (n - 1)th root of unity. We define a dynamical invariant, which we call the minimal rotation number. It determines which of these maps are conjugate on their Julia sets, and we obtain an exact count of the number of distinct conjugacy classes of maps drawn from these main cardioids.
引用
收藏
页数:13
相关论文
共 16 条
[1]  
[Anonymous], 1995, Curr. Dev. Math.
[2]   Sierpinski-curve Julia sets and singular perturbations of complex polynomials [J].
Blanchard, P ;
Devaney, RL ;
Look, DM ;
Seal, P ;
Shapiro, Y .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 :1047-1055
[3]   Extending external rays throughout the Julia sets of rational maps [J].
Cilingir, Figen ;
Devaney, Robert L. ;
Russell, Elizabeth D. .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2010, 7 (01) :223-240
[4]  
Devaney R.L., 2006, TOPOLOGY P, V30, P163
[5]  
Devaney RL, 2006, CONTEMP MATH, V396, P37
[6]   The escape trichotomy for singularly perturbed rational maps [J].
Devaney, RL ;
Look, DM ;
Uminsky, D .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (06) :1621-1634
[7]   Buried Sierpinski curve Julia sets [J].
Devaney, RL ;
Look, DM .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 13 (04) :1035-1046
[8]   A MYRIAD OF SIERPINSKI CURVE JULIA SETS [J].
Devaney, Robert L. .
DIFFERENCE EQUATIONS, SPECIAL FUNCTIONS AND ORTHOGONAL POLYNOMIALS, 2007, :131-148
[9]   Dynamic classification of escape time Sierpinski curve Julia sets [J].
Devaney, Robert L. ;
Pilgrim, Kevin M. .
FUNDAMENTA MATHEMATICAE, 2009, 202 (02) :181-198
[10]  
Devaney RobertL., 2004, QUAL THEOR DYN SYST, V5, P337