(p, q)-Mixed geominimal surface area and (p, q)-mixed affine surface area

被引:12
作者
Li, Xiao [1 ]
Wang, Hejun [1 ]
Zhou, Jiazu [1 ,2 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Wuhan Univ Sci & Technol, Coll Sci, Wuhan 430081, Hubei, Peoples R China
关键词
(p; q)-Mixed geominimal surface area; q)-Mixed Petty body; q)-Mixed affine surface area; Affine isoperimetric inequalities; MINKOWSKI-FIREY THEORY; ISOPERIMETRIC-INEQUALITIES; BODIES;
D O I
10.1016/j.jmaa.2019.03.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the (p, q)-mixed geominimal surface area and the (p, q)-mixed affine surface area are introduced. They are extensions of the L, geominimal surface area and the L, affine surface area, respectively. Affine invariance under unimodular affine transformations and continuity for the (p, q)-mixed geominimal surface area and the (p, q)-mixed affine surface area are discussed. The existence, the uniqueness and the uniform boundness of the (p, q)-mixed Petty bodies are obtained. Affine isoperimetric inequalities for the (p, q)-mixed geominimal surface area and the (p, q)-mixed affine surface area are established. (C) 2019 Published by Elsevier Inc.
引用
收藏
页码:1472 / 1492
页数:21
相关论文
共 55 条
[1]  
Blaschke W., 1923, Die Grundlehren der Mathematischen Wissenschaften
[2]   The Lp dual Minkowski problem for p > 1 and q > 0 [J].
Boroczky, Karoly J. ;
Fodor, Ferenc .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (12) :7980-8033
[3]  
Böröczky KJ, 2018, J DIFFER GEOM, V109, P411
[4]   Affine isoperimetric inequalities in the functional Orlicz-Brunn-Minkowski theory [J].
Caglar, Umut ;
Ye, Deping .
ADVANCES IN APPLIED MATHEMATICS, 2016, 81 :78-114
[5]  
Chen CQ, 2019, MATH ANN, V373, P953, DOI 10.1007/s00208-018-1727-3
[6]   LYZ ellipsoid and Petty projection body for log-concave functions [J].
Fang, Niufa ;
Zhou, Jiazu .
ADVANCES IN MATHEMATICS, 2018, 340 :914-959
[7]  
Firey WJ, 1962, MATH SCAND, V10, P17
[8]   Valuations and surface area measures [J].
Haberl, Christoph ;
Parapatits, Lukas .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 687 :225-245
[9]   On the Lp dual Minkowski problem [J].
Huang, Yong ;
Zhao, Yiming .
ADVANCES IN MATHEMATICS, 2018, 332 :57-84
[10]   Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems [J].
Huang, Yong ;
Lutwak, Erwin ;
Yang, Deane ;
Zhang, Gaoyong .
ACTA MATHEMATICA, 2016, 216 (02) :325-388