Implementation of a Sinusoidal Raster Scan for High-Speed Atomic Force Microscopy

被引:2
作者
Otieno, Luke Oduor [1 ]
Lee, Yong Joong [1 ]
Alunda, Bernard Ouma [2 ]
机构
[1] Kyungpook Natl Univ, Sch Mech Engn, Daegu 41566, South Korea
[2] Taita Taveta Univ, Sch Mines & Engn, POB 635-80300, Voi, Kenya
关键词
High-speed atomic force microscopy; Sinusoidal raster scan; FPGA;
D O I
10.3938/jkps.77.605
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To improve the speed of an atomic force microscope (AFM), one must improve the bandwidth of its components, and the lateral XY scanner is no exception. Sinusoidal raster scans provide a simple way of improving lateral scan rates without the need for additional hardware and/or complex control algorithms. However, a raster scan using a sinusoidal waveform leads to a non-uniform probesample velocity. Uniform spatial sampling of scan data can be achieved in this case by varying the sampling rate as the probe sample velocity varies. In this work, we present a field-programmable gate array (FPGA)-based implementation of a sinusoidal raster scan with uniform spatial sampling for a high-speed atomic force microscope (HS-AFM). Using a home-made HS-AFM scanner and a custom controller, we demonstrate the performance of our approach by imaging Blu-ray disk data tracks in the contact mode. While the results show images comparable to those acquired using the traditional triangular raster scans, mirroring effects are better suppressed in high-speed imaging with sinusoidal scan signals.
引用
收藏
页码:605 / 612
页数:8
相关论文
共 16 条
[1]   A high-speed atomic force microscope for studying biological macromolecules in action [J].
Ando, T ;
Kodera, N ;
Maruyama, D ;
Takai, E ;
Saito, K ;
Toda, A .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2002, 41 (7B) :4851-4856
[2]   High-speed atomic force microscopy and its future prospects [J].
Ando T. .
Biophysical Reviews, 2018, 10 (2) :285-292
[3]   Creep, hysteresis, and vibration compensation for piezoactuators: Atomic force microscopy application [J].
Croft, D ;
Shed, G ;
Devasia, S .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2001, 123 (01) :35-43
[4]   Improvement of Alternative Non-Raster Scanning Methods for High Speed Atomic Force Microscopy: A Review [J].
Das, Sajal K. ;
Badal, Faisal R. ;
Rahman, Md Atikur ;
Islam, Md Atikul ;
Sarker, Subrata K. ;
Paul, Norottom .
IEEE ACCESS, 2019, 7 :115603-115624
[5]   Data acquisition system for high speed atomic force microscopy [J].
Fantner, GE ;
Hegarty, P ;
Kindt, JH ;
Schitter, G ;
Cidade, GAG ;
Hansma, PK .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2005, 76 (02) :026118-1
[6]   Bridging the gap between conventional and video-speed scanning probe microscopes [J].
Fleming, A. J. ;
Kenton, B. J. ;
Leang, K. K. .
ULTRAMICROSCOPY, 2010, 110 (09) :1205-1214
[7]   Optimal Periodic Trajectories for Band-Limited Systems [J].
Fleming, A. J. ;
Wills, A. G. .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2009, 17 (03) :552-562
[8]   A robust control approach for high-speed nanopositioning applications [J].
Habibullah, H. ;
Pota, H. R. ;
Petersen, I. R. .
SENSORS AND ACTUATORS A-PHYSICAL, 2019, 292 :137-148
[9]   Applied physics - High-speed atomic force microscopy [J].
Hansma, Paul K. ;
Schitter, Georg ;
Fantner, Georg E. ;
Prater, Craig .
SCIENCE, 2006, 314 (5799) :601-602
[10]   A mechanical microscope: High-speed atomic force microscopy [J].
Humphris, ADL ;
Miles, MJ ;
Hobbs, JK .
APPLIED PHYSICS LETTERS, 2005, 86 (03) :1-3