Anderson localization for Schrodinger operators on Z2 with quasi-periodic potential

被引:75
作者
Bourgain, J [1 ]
Goldstein, M
Schlag, W
机构
[1] Inst Adv Study, Princeton, NJ 08540 USA
[2] Princeton Univ, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/BF02392795
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:41 / 86
页数:46
相关论文
共 26 条
[1]   LOCALIZATION AT LARGE DISORDER AND AT EXTREME ENERGIES - AN ELEMENTARY DERIVATION [J].
AIZENMAN, M ;
MOLCHANOV, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (02) :245-278
[2]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[3]   On bounding the Betti numbers and computing the Euler characteristic of semi-algebraic sets [J].
Basu, S .
DISCRETE & COMPUTATIONAL GEOMETRY, 1999, 22 (01) :1-18
[4]   On the combinatorial and algebraic complexity of quantifier elimination [J].
Basu, S ;
Pollack, R ;
Roy, MF .
JOURNAL OF THE ACM, 1996, 43 (06) :1002-1045
[5]   New results on quantifier elimination over real closed fields and applications to constraint databases [J].
Basu, S .
JOURNAL OF THE ACM, 1999, 46 (04) :537-555
[6]  
Bochnak J., 1998, Real Algebraic Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete 36, DOI DOI 10.1007/978-3-662-03718-8
[7]   Anderson localization for Schrodinger operators on Z with potentials given by the skew-shift [J].
Bourgain, J ;
Goldstein, M ;
Schlag, W .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 220 (03) :583-621
[8]   On nonperturbative localization with quasi-periodic potential [J].
Bourgain, J ;
Goldstein, M .
ANNALS OF MATHEMATICS, 2000, 152 (03) :835-879
[9]   Anderson localization for Schrodinger operators on Z with strongly mixing potentials [J].
Bourgain, J ;
Schlag, W .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 215 (01) :143-175
[10]  
BOURGAIN J, 2000, LECT NOTES MATH, V1745, P67