Reversal Mechanism of an Individual Ni Nanotube Simultaneously Studied by Torque and SQUID Magnetometry

被引:52
作者
Buchter, A. [1 ]
Nagel, J. [2 ,3 ]
Rueffer, D. [4 ]
Xue, F. [1 ]
Weber, D. P. [1 ]
Kieler, O. F. [5 ]
Weimann, T. [5 ]
Kohlmann, J. [5 ]
Zorin, A. B. [5 ]
Russo-Averchi, E. [4 ]
Huber, R. [6 ]
Berberich, P. [6 ]
Fontcuberta i Morral, A. [4 ]
Kemmler, M. [2 ,3 ]
Kleiner, R. [2 ,3 ]
Koelle, D. [2 ,3 ]
Grundler, D. [6 ,7 ]
Poggio, M. [1 ]
机构
[1] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland
[2] Univ Tubingen, Inst Phys, D-72076 Tubingen, Germany
[3] Univ Tubingen, Ctr Collect Quantum Phenomena LISA, D-72076 Tubingen, Germany
[4] Ecole Polytech Fed Lausanne, Lab Mat Semicond, Inst Mat, CH-1015 Lausanne, Switzerland
[5] Phys Tech Bundesanstalt, Fachbereich Quantenelekt 2 4, D-38116 Braunschweig, Germany
[6] Tech Univ Munich, Lehrstuhl Phys Funktionaler Schichtsyst, Phys Dept E10, D-85747 Garching, Germany
[7] Ecole Polytech Fed Lausanne, Inst Mat, Fac Sci & Tech Ingenieur, CH-1015 Lausanne, Switzerland
关键词
MAGNETIZATION; NANOMAGNETS;
D O I
10.1103/PhysRevLett.111.067202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using an optimally coupled nanometer-scale SQUID, we measure the magnetic flux originating from an individual ferromagnetic Ni nanotube attached to a Si cantilever. At the same time, we detect the nanotube's volume magnetization using torque magnetometry. We observe both the predicted reversible and irreversible reversal processes. A detailed comparison with micromagnetic simulations suggests that vortexlike states are formed in different segments of the individual nanotube. Such stray-field free states are interesting for memory applications and noninvasive sensing.
引用
收藏
页数:5
相关论文
共 33 条
  • [21] Nagel J., ARXIV13051195
  • [22] Magnetic domain-wall racetrack memory
    Parkin, Stuart S. P.
    Hayashi, Masamitsu
    Thomas, Luc
    [J]. SCIENCE, 2008, 320 (5873) : 190 - 194
  • [23] Force-detected nuclear magnetic resonance: recent advances and future challenges
    Poggio, M.
    Degen, C. L.
    [J]. NANOTECHNOLOGY, 2010, 21 (34)
  • [24] Magnetic states of an individual Ni nanotube probed by anisotropic magnetoresistance
    Rueffer, Daniel
    Huber, Rupert
    Berberich, Paul
    Albert, Stephan
    Russo-Averchi, Eleonora
    Heiss, Martin
    Arbiol, Jordi
    Fontcuberta i Morral, Anna
    Grundler, Dirk
    [J]. NANOSCALE, 2012, 4 (16) : 4989 - 4995
  • [25] IMPROVED FIBER-OPTIC INTERFEROMETER FOR ATOMIC FORCE MICROSCOPY
    RUGAR, D
    MAMIN, HJ
    GUETHNER, P
    [J]. APPLIED PHYSICS LETTERS, 1989, 55 (25) : 2588 - 2590
  • [26] Magnetic dissipation and fluctuations in individual nanomagnets measured by ultrasensitive cantilever magnetometry
    Stipe, BC
    Mamin, HJ
    Stowe, TD
    Kenny, TW
    Rugar, D
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (13) : 2874 - 2877
  • [27] Equilibrium magnetic states in individual hemispherical permalloy caps
    Streubel, Robert
    Kravchuk, Volodymyr P.
    Sheka, Denis D.
    Makarov, Denys
    Kronast, Florian
    Schmidt, Oliver G.
    Gaididei, Yuri
    [J]. APPLIED PHYSICS LETTERS, 2012, 101 (13)
  • [28] Magnetically Capped Rolled-up Nanomembranes
    Streubel, Robert
    Thurmer, Dominic J.
    Makarov, Denys
    Kronast, Florian
    Kosub, Tobias
    Kravchuk, Volodymyr
    Sheka, Denis D.
    Gaididei, Yuri
    Schaefer, Rudolf
    Schmidt, Oliver G.
    [J]. NANO LETTERS, 2012, 12 (08) : 3961 - 3966
  • [29] Spin-wave quantization in ferromagnetic nickel nanowires -: art. no. 027201
    Wang, ZK
    Kuok, MH
    Ng, SC
    Lockwood, DJ
    Cottam, MG
    Nielsch, K
    Wehrspohn, RB
    Gösele, U
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (02)
  • [30] Cantilever Magnetometry of Individual Ni Nanotubes
    Weber, D. P.
    Rueffer, D.
    Buchter, A.
    Xue, F.
    Russo-Averchi, E.
    Huber, R.
    Berberich, P.
    Arbiol, J.
    Fontcuberta i Morral, A.
    Grundler, D.
    Poggio, M.
    [J]. NANO LETTERS, 2012, 12 (12) : 6139 - 6144