Polyaniline nanorods random assembly on sugarcane bagasse pith-based carbon sheets with promising capacitive performance

被引:10
作者
Gao, Kezheng [1 ]
Zhao, Shuyan [1 ]
Niu, Qingyuan [1 ]
Wang, Lizhen [1 ]
机构
[1] Zhengzhou Univ Light Ind, Sch Mat & Chem Engn, Zhengzhou 450002, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
GRAPHENE OXIDE; NANOWIRE ARRAYS; SUPERCAPACITORS; NANOTUBES; ELECTROPOLYMERIZATION; FABRICATION; NANOSHEETS; ELECTRODE; SURFACE;
D O I
10.1039/c9ra01394f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polyaniline (PANI) nanorods were randomly deposited on oxidized 2D sugarcane pith-based porous carbon nanosheets by using dilute polymerization methods. The random stacked morphology of the PANI nanorods on the oxidized pith-based porous carbon nanosheets (SPCN) can be effectively controlled by simply changing the molar mass of aniline monomer. When the molar mass of the aniline monomer is increased to 0.02 M, the PANI nanorods can be randomly and uniformly stacked on the oxidized SPCN. Most of these stacked pores derived from random stack of the PANI nanorods on the oxidized SPCN are mesopore and macropore. These stacked pores not only facilitate the diffusion of ions in the stacked layer of the PANI nanorods, but also mitigate mechanical deformation of the PANI nanorods during the doping/dedoping process. Furthermore, the relationship between the properties of the oxidized SPCN/PANI-X (X represents the molar mass of aniline monomer) electrode materials and molar mass of aniline monomer is explored in detail. The oxidized SPCN/PANI-0.02 exhibits the best electrochemical performance in 1 M H2SO4. The largest specific electrode capacitance is up to 513 F g(-1) at a current density of 0.25 A g(-1). The oxidized SPCN/PANI-0.02 also exhibits excellent electrochemical cycling stability.
引用
收藏
页码:17358 / 17365
页数:8
相关论文
共 35 条
[1]   Polyaniline nanofibers: broadening applications for conducting polymers [J].
Baker, Christina O. ;
Huang, Xinwei ;
Nelson, Wyatt ;
Kaner, Richard B. .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (05) :1510-1525
[2]   Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose [J].
Chen, Li-Feng ;
Huang, Zhi-Hong ;
Liang, Hai-Wei ;
Yao, Wei-Tang ;
Yu, Zi-You ;
Yu, Shu-Hong .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (11) :3331-3338
[3]   Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties [J].
Chiou, Nan-Rong ;
Lui, Chunmeng ;
Guan, Jingjiao ;
Lee, L. James ;
Epstein, Arthur J. .
NATURE NANOTECHNOLOGY, 2007, 2 (06) :354-357
[4]   Polyaniline nanofibers prepared by dilute polymerization [J].
Chiou, NR ;
Epstein, AJ .
ADVANCED MATERIALS, 2005, 17 (13) :1679-+
[5]   Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications [J].
Ciric-Marjanovic, Gordana .
SYNTHETIC METALS, 2013, 177 :1-47
[6]   Polyaniline supercapacitors [J].
Eftekhari, Ali ;
Li, Lei ;
Yang, Yang .
JOURNAL OF POWER SOURCES, 2017, 347 :86-107
[7]   Supercapacitors based on conducting polymers/nanotubes composites [J].
Frackowiak, E ;
Khomenko, V ;
Jurewicz, K ;
Lota, K ;
Béguin, F .
JOURNAL OF POWER SOURCES, 2006, 153 (02) :413-418
[8]   Hierarchical graphene-polyaniline nanocomposite films for high-performance flexible electronic gas sensors [J].
Guo, Yunlong ;
Wang, Ting ;
Chen, Fanhong ;
Sun, Xiaoming ;
Li, Xiaofeng ;
Yu, Zhongzhen ;
Wan, Pengbo ;
Chen, Xiaodong .
NANOSCALE, 2016, 8 (23) :12073-12080
[9]   Needle-like polyaniline nanowires on graphite nanofibers: hierarchical micro/nano-architecture for high performance supercapacitors [J].
He, Shuijian ;
Hu, Xiaowu ;
Chen, Shuiliang ;
Hu, Huan ;
Hanif, Muddasir ;
Hou, Haoqing .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (11) :5114-5120
[10]   Three-dimensional reduced graphene oxide/polyaniline nanocomposite film prepared by diffusion driven layer-by-layer assembly for high-performance supercapacitors [J].
Hong, Xiaodong ;
Zhang, Binbin ;
Murphy, Elizabeth ;
Zou, Jianli ;
Kim, Franklin .
JOURNAL OF POWER SOURCES, 2017, 343 :60-66