On quasi-twisted codes over finite fields

被引:44
作者
Jia, Yan [1 ]
机构
[1] Nanyang Technol Univ, SPMS MAS 0301, Div Math Sci, Singapore 637371, Singapore
基金
新加坡国家研究基金会;
关键词
Quasi-twisted code; Finite field; Generalized discrete Fourier transform; Repeated-root case; Nonrepeated-root case; Construction; ALGEBRAIC STRUCTURE;
D O I
10.1016/j.ffa.2011.08.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In coding theory, quasi-twisted (QT) codes form an important class of codes which has been extensively studied. We decompose a QT code to a direct sum of component codes linear codes over rings. Furthermore, given the decomposition of a QT code, we can describe the decomposition of its dual code. We also use the generalized discrete Fourier transform to give the inverse formula for both the nonrepeated-root and repeated-root cases. Then we produce a formula which can be used to construct a QT code given the component codes. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:237 / 257
页数:21
相关论文
共 5 条
[1]   The structure of 1-generator quasi-twisted codes and new linear codes [J].
Aydin, N ;
Siap, I ;
Ray-Chaudhuri, DK .
DESIGNS CODES AND CRYPTOGRAPHY, 2001, 24 (03) :313-326
[2]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[3]  
Lidl R., 1997, Finite Fields
[4]   On the algebraic structure of quasi-cyclic codes IV:: Repeated roots [J].
Ling, S ;
Niederreiter, H ;
Solé, P .
DESIGNS CODES AND CRYPTOGRAPHY, 2006, 38 (03) :337-361
[5]   On the algebraic structure of quasi-cyclic codes II:: Chain rings [J].
Ling, S ;
Solé, P .
DESIGNS CODES AND CRYPTOGRAPHY, 2003, 30 (01) :113-130