On the Application of Monotonicity Methods to the Boundary Value Problems on the Sierpinski Gasket

被引:3
作者
Galewski, Marek [1 ]
机构
[1] Tech Univ Lodz, Inst Math, Wolczanska 215, PL-90924 Lodz, Poland
关键词
Monotone operator; pseudomonotone operator; dependence on parameters; Sierpinski gasket; elliptic problem; SYSTEMS;
D O I
10.1080/01630563.2019.1602543
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the monotonicity methods can also be applied in the fractal setting to examine existence and also existence and uniqueness. Furthermore, we investigate the continuous dependence on parameters for the problem under consideration.
引用
收藏
页码:1344 / 1354
页数:11
相关论文
共 50 条
[41]   Superconvergence Analysis of Discontinuous Galerkin Methods for Systems of Second-Order Boundary Value Problems [J].
Temimi, Helmi .
COMPUTATION, 2023, 11 (11)
[42]   THE HYPERBOLIC REGION FOR HYPERBOLIC BOUNDARY VALUE PROBLEMS [J].
Coulombel, Jean-Francois .
OSAKA JOURNAL OF MATHEMATICS, 2011, 48 (02) :457-469
[43]   Degenerate nonlinear boundary-value problems [J].
Boichuk, O. A. ;
Shehda, L. M. .
UKRAINIAN MATHEMATICAL JOURNAL, 2009, 61 (09) :1387-1403
[44]   Lagrangian variational framework for boundary value problems [J].
Figotin, Alexander ;
Reyes, Guillermo .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (09)
[45]   HYPERBOLIC BOUNDARY VALUE PROBLEMS WITH TRIHEDRAL CORNERS [J].
Halpern, Laurence ;
Rauch, Jeffrey .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (08) :4403-4450
[46]   Strongly nonlinear multivalued boundary value problems [J].
Gasinski, L ;
Papageorgiou, NS .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (04) :1219-1238
[47]   On a nonlinear boundary value problems with impulse action [J].
Tleulessova, Agila B. ;
Temesheva, Svetlana M. ;
Orazbekova, Aidana S. .
OPEN MATHEMATICS, 2025, 23 (01)
[48]   NUMERICAL METHOD TO A CLASS OF BOUNDARY VALUE PROBLEMS [J].
Qiu, Yu-Yang .
THERMAL SCIENCE, 2018, 22 (04) :1877-1883
[49]   ELLIPTIC BOUNDARY VALUE PROBLEMS WITH DISCONTINUOUS NONLINEARITIES [J].
Kim, In-Sook ;
Bae, Jung-Hyun .
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (01) :27-38
[50]   MONOTONICITY METHODS FOR INPUT-TO-STATE STABILITY OF NONLINEAR PARABOLIC PDES WITH BOUNDARY DISTURBANCES [J].
Mironchenko, Andrii ;
Karafyllis, Iasson ;
Krstic, Miroslav .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (01) :510-532