On the Application of Monotonicity Methods to the Boundary Value Problems on the Sierpinski Gasket

被引:3
作者
Galewski, Marek [1 ]
机构
[1] Tech Univ Lodz, Inst Math, Wolczanska 215, PL-90924 Lodz, Poland
关键词
Monotone operator; pseudomonotone operator; dependence on parameters; Sierpinski gasket; elliptic problem; SYSTEMS;
D O I
10.1080/01630563.2019.1602543
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the monotonicity methods can also be applied in the fractal setting to examine existence and also existence and uniqueness. Furthermore, we investigate the continuous dependence on parameters for the problem under consideration.
引用
收藏
页码:1344 / 1354
页数:11
相关论文
共 50 条
[21]   The Sierpinski gasket as the Martin boundary of a non-isotropic Markov chain [J].
Kesseboehmer, Marc ;
Samuel, Tony ;
Sender, Karenina .
JOURNAL OF FRACTAL GEOMETRY, 2020, 7 (02) :113-136
[22]   Analysis of α-fractal functions without boundary point conditions on the Sierpinski gasket [J].
Gurubachan ;
Chandramouli, V. V. M. S. ;
Verma, S. .
APPLIED MATHEMATICS AND COMPUTATION, 2025, 486
[23]   Mean Value Properties of Harmonic Functions on Sierpinski Gasket Type Fractals [J].
Qiu, Hua ;
Strichartz, Robert S. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2013, 19 (05) :943-966
[24]   Mean Value Properties of Harmonic Functions on Sierpinski Gasket Type Fractals [J].
Hua Qiu ;
Robert S. Strichartz .
Journal of Fourier Analysis and Applications, 2013, 19 :943-966
[25]   Methods of numerical analysis for boundary value problems with strong singularity [J].
Rukavishnikov, V. A. .
RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2009, 24 (06) :565-590
[26]   Nonlinear boundary value problems [J].
Papageorgiou, NS ;
Yannakakis, N .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1999, 109 (02) :211-230
[27]   Nonlinear boundary value problems [J].
Nikolaos S. Papageorgiou ;
Nikolaos Yannakakis .
Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 1999, 109 :211-230
[28]   Global error analysis of discontinuous Galerkin methods for systems of boundary value problems [J].
Temimi, Helmi .
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 33 (04) :368-380
[29]   On the ellipticity of coupled finite element and one-equation boundary element methods for boundary value problems [J].
Of, G. ;
Steinbach, O. .
NUMERISCHE MATHEMATIK, 2014, 127 (03) :567-593
[30]   An application of a nonstandard cone to discrete boundary value problems with unbounded indefinite forcing [J].
Dahal, Rajendra ;
Goodrich, Christopher S. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2019, 25 (06) :882-903