On the Application of Monotonicity Methods to the Boundary Value Problems on the Sierpinski Gasket

被引:3
作者
Galewski, Marek [1 ]
机构
[1] Tech Univ Lodz, Inst Math, Wolczanska 215, PL-90924 Lodz, Poland
关键词
Monotone operator; pseudomonotone operator; dependence on parameters; Sierpinski gasket; elliptic problem; SYSTEMS;
D O I
10.1080/01630563.2019.1602543
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the monotonicity methods can also be applied in the fractal setting to examine existence and also existence and uniqueness. Furthermore, we investigate the continuous dependence on parameters for the problem under consideration.
引用
收藏
页码:1344 / 1354
页数:11
相关论文
共 12 条
[1]  
[Anonymous], 2018, CHAPMAN HALL CRC MON
[2]   Nonlinear problems on the Sierpinski gasket [J].
Bisci, Giovanni Molica ;
Repovs, Dusan ;
Servadei, Raffaella .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 452 (02) :883-895
[3]  
Bisci GM, 2015, P AM MATH SOC, V143, P2959
[4]   Qualitative analysis of gradient-type systems with oscillatory nonlinearities on the Sierpinski Gasket [J].
Bonanno, Gabriele ;
Bisci, Giovanni Molica ;
Radulescu, Vicentiu .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2013, 34 (03) :381-398
[5]   VARIATIONAL ANALYSIS FOR A NONLINEAR ELLIPTIC PROBLEM ON THE SIERPINSKI GASKET [J].
Bonanno, Gabriele ;
Bisci, Giovanni Molica ;
Radulescu, Vicentiu .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2012, 18 (04) :941-953
[6]   INFINITELY MANY SOLUTIONS FOR THE DIRICHLET PROBLEM ON THE SIERPINSKI GASKET [J].
Breckner, Brigitte E. ;
Radulescu, Vicentiu D. ;
Varga, Csaba .
ANALYSIS AND APPLICATIONS, 2011, 9 (03) :235-248
[7]   On the existence of three solutions for the Dirichlet problem on the Sierpinski gasket [J].
Breckner, Brigitte E. ;
Repovs, Dusan ;
Varga, Csaba .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (09) :2980-2990
[8]  
Denkowski Z, 2003, INTRO NONLINEAR ANAL
[9]   Non-linear elliptical equations on the Sierpinski gasket [J].
Falconer, KJ ;
Hu, JX .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 240 (02) :552-573
[10]  
Kigami J., 2001, ANAL FRACTALS