Small perturbation of diffusions in inhomogeneous media

被引:4
|
作者
Chiang, TS [1 ]
Sheu, SJ [1 ]
机构
[1] Acad Sinica, Inst Math, Taipei 11529, Taiwan
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2002年 / 38卷 / 03期
关键词
Wentzell-Friedlin theory; large deriation principle; Cameron-Martin-Girsanov formula; local time; occupation time;
D O I
10.1016/S0246-0203(01)01101-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For the system of d-dim stochastic differential equations, dX(epsilon) (t) = b(X-epsilon(t)) dt + epsilonsigma(X-epsilon(t)) dW(t), t is an element of [0, 1], X-epsilon(0) = x(0) is an element of R-d, where b(x) and sigma (x) are smooth except possibly along the hyperplane {(x(1),..., x(d)): x(1) = 0}, we shall demonstrate that the natural setup of its large deviation principle is to consider the probability epsilon(2) log P(parallel to X-epsilon - phi parallel to < delta. parallel to u(epsilon) - psi parallel to < delta, parallel to l(epsilon) - eta parallel to < delta) similar to -I ( phi, psi, eta) of the triplet (X-epsilon, u(epsilon), l(epsilon)) simultaneously. Here, u(epsilon) is the occupation time of X-1(epsilon)((.)) in the positive half line and l(epsilon)((.)) is the local time of X-1(epsilon)((.)) at 0. The explicit form of the rate function I((.), (.), (.)) is obtained. The usual Wentzell-Friedlin theory concerns only probabilities of the form epsilon(2) log P(parallel to X-epsilon - phi parallel to < delta) and its limit is a consequence of the contraction principle of our result. (C) 2002 tditions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:285 / 318
页数:34
相关论文
共 50 条