Rigidity for equivalence relations on homogeneous spaces

被引:3
作者
Ioana, Adrian [1 ]
Shalom, Yehuda [2 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Relative property (T); homogenous spaces; II1; factors; equivalence relations; PROPERTY-T; II1; FACTORS;
D O I
10.4171/GGD/187
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Popa's notion of rigidity for equivalence relations induced by actions on homogeneous spaces. For any lattices Gamma and Lambda in a semisimple Lie group G with finite center and no compact factors we prove that the action Gamma (sic) G/Lambda is rigid. If in addition G has property (T) then we derive that the von Neumann algebra L-infinity (G/Lambda) (sic) Gamma has property (T). We also show that if the stabilizer of any non-zero point in the Lie algebra of G under the adjoint action of G is amenable (e. g., if G = SL2(R)), then any ergodic subequivalence relation of the orbit equivalence relation of the action Gamma (sic) G/Lambda is either hyperfinite or rigid.
引用
收藏
页码:403 / 417
页数:15
相关论文
共 21 条
[21]  
Zimmer R.J., 1984, Monographs in Mathematics, V81