Rigidity for equivalence relations on homogeneous spaces

被引:3
作者
Ioana, Adrian [1 ]
Shalom, Yehuda [2 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Relative property (T); homogenous spaces; II1; factors; equivalence relations; PROPERTY-T; II1; FACTORS;
D O I
10.4171/GGD/187
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Popa's notion of rigidity for equivalence relations induced by actions on homogeneous spaces. For any lattices Gamma and Lambda in a semisimple Lie group G with finite center and no compact factors we prove that the action Gamma (sic) G/Lambda is rigid. If in addition G has property (T) then we derive that the von Neumann algebra L-infinity (G/Lambda) (sic) Gamma has property (T). We also show that if the stabilizer of any non-zero point in the Lie algebra of G under the adjoint action of G is amenable (e. g., if G = SL2(R)), then any ergodic subequivalence relation of the orbit equivalence relation of the action Gamma (sic) G/Lambda is either hyperfinite or rigid.
引用
收藏
页码:403 / 417
页数:15
相关论文
共 21 条
[1]   Amenability and exactness for dynamical systems and their C*-algebras [J].
Anantharaman-Delaroche, C .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (10) :4153-4178
[2]  
Brown N. P, 2008, GRAD STUD MATH, V88
[3]   PROPERTY-T FOR VONNEUMANN-ALGEBRAS [J].
CONNES, A ;
JONES, V .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1985, 17 (JAN) :57-62
[4]  
Connes A., 1981, Ergodic Theory and Dynamical Systems, V1, P431, DOI [10.1017/S014338570000136X, DOI 10.1017/S014338570000136X]
[5]  
Conway J. B., 2000, Graduate Studies in Mathematics, V21
[6]   ERGODIC EQUIVALENCE RELATIONS, COHOMOLOGY, AND VONNEUMANN ALGEBRAS .1. [J].
FELDMAN, J ;
MOORE, CC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 234 (02) :289-324
[7]   KAZHDAN'S PROPERTY T FOR DISCRETE QUANTUM GROUPS [J].
Fima, Pierre .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2010, 21 (01) :47-65
[8]   On Popa's Cocycle Superrigidity Theorem [J].
Furman, Alex .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
[9]   An uncountable family of nonorbit equivalent actions of Fn [J].
Gaboriau, D ;
Popa, S .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (03) :547-559
[10]   Free product actions with relative property (T) and trivial outer automorphism groups [J].
Gaboriau, Damien .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (02) :414-427