A 2D electrocardiogram data compression method using a sample entropy-based complexity sorting approach

被引:11
|
作者
Pandey, Anukul [1 ]
Saini, Barjinder Singh [1 ]
Singh, Butta [2 ]
Sood, Neetu [1 ]
机构
[1] Dr BR Ambedkar Natl Inst Technol, Dept Elect & Commun Engn, Jalandhar, India
[2] Guru Nanak Dev Univ, Dept Elect & Commun Engn, Reg Campus, Jalandhar, India
关键词
Electrocardiogram; ECG; Pre-processing; Data compression; Sample entropy; SampEn; JPEG2000; Quality score; Complexity sorting; ECG DATA-COMPRESSION; WAVELET; SIGNALS; ALGORITHM;
D O I
10.1016/j.compeleceng.2016.10.012
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes an effectual sample entropy (SampEn) based complexity sorting preprocessing technique for two dimensional electrocardiogram (ECG) data compression. The novelty of the approach lies in its ability to compress the quasi-periodic ECG signal by exploiting the intra and inter-beat correlations. The proposed method comprises the following steps: (1) QRS detection, (2) Length normalization, (3) Dc equalization, (4) SampEn based nonlinear complexity sorting and (5) Compression using JPEG2000 Codec. The performance has been evaluated over 48 records from the MIT-BIH arrhythmia database. The average quality score (QS) measurements at different residual errors were 42.25, 4.73, and 2.75 for percentage root mean square difference (PRD), PRD1024, and PRD Normalized respectively. The work also reports extensive experimentations on the compressor for various durations of the ECG records (5-30 min, with 5-min increment). The proposed algorithm demonstrates significantly better perforthance in comparison to the contemporary stateof-the-art works present in the literature. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:30 / 45
页数:16
相关论文
共 31 条