Novel 3D Electrospun Scaffolds with Fibers Oriented Randomly and Evenly in Three Dimensions to Closely Mimic the Unique Architectures of Extracellular Matrices in Soft Tissues: Fabrication and Mechanism Study

被引:115
作者
Cai, Shaobo [1 ]
Xu, Helan [1 ]
Jiang, Qiuran [1 ]
Yang, Yiqi [1 ,2 ]
机构
[1] Univ Nebraska, Dept Text Merchandising & Fash Design, Lincoln, NE 68583 USA
[2] Univ Nebraska, Dept Biol Syst Engn, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68583 USA
关键词
GENE-EXPRESSION; IN-VITRO; NANOFIBERS; CULTURE; CANCER; DIFFERENTIATION; PHENOTYPE; SYSTEM; MATS;
D O I
10.1021/la304414j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work, novel electrospun scaffolds with fibers oriented randomly and evenly in three dimensions (3D) including in the thickness direction were developed based on the principle of electrostatic repulsion. This unique structure is different from most electrospun scaffolds with fibers oriented mainly in one direction. The structure of novel 3D scaffolds could more closely mimic the 3D randomly oriented fibrous architectures in many native extracellular matrices (ECMs). The cell culture results of this study indicated that, instead of becoming flattened cells when cultured in conventional electrospun scaffolds, the cells cultured on novel 3D scaffolds could develop into stereoscopic topographies, which highly simulated in vivo 3D cellular morphologies and are believed to be of vital importance for cells to function and differentiate appropriately. Also, due to the randomly oriented fibrous structure, improvement of nearly 5 times in cell proliferation could be observed when comparing our 3D scaffolds with 2D counterparts after 7 days of cell culture, while most currently reported 3D scaffolds only showed 1.5- to 2.5-fold improvement for the similar comparison. One mechanism of this fabrication process has also been proposed and showed that the rapid delivery of electrons on the fibers was the crucial factor for formation of 3D architectures.
引用
收藏
页码:2311 / 2318
页数:8
相关论文
共 39 条
[1]   Alginate-based nanofibrous scaffolds: Structural, mechanical, and biological properties [J].
Bhattarai, Narayan ;
Li, Zhensheng ;
Edmondson, Dennis ;
Zhang, Miqin .
ADVANCED MATERIALS, 2006, 18 (11) :1463-+
[2]   Gene expression perturbation in vitro - A growing case for three-dimensional (3D) culture systems [J].
Birgersdotter, A ;
Sandberg, R ;
Ernberg, I .
SEMINARS IN CANCER BIOLOGY, 2005, 15 (05) :405-412
[3]   Tissue architecture: the ultimate regulator of breast epithelial function - Commentary [J].
Bissell, MJ ;
Rizki, A ;
Mian, IS .
CURRENT OPINION IN CELL BIOLOGY, 2003, 15 (06) :753-762
[4]   Three-Dimensional Electrospun Alginate Nanofiber Mats via Tailored Charge Repulsions [J].
Bonino, Christopher A. ;
Efimenko, Kirill ;
Jeong, Sung In ;
Krebs, Melissa D. ;
Alsberg, Eben ;
Khan, Saad A. .
SMALL, 2012, 8 (12) :1928-1936
[5]   Functional structure and composition of the extracellular matrix [J].
Bosman, FT ;
Stamenkovic, I .
JOURNAL OF PATHOLOGY, 2003, 200 (04) :423-428
[6]   Novel biodegradable three-dimensional macroporous scaffold using aligned electrospun nanofibrous yarns for bone tissue engineering [J].
Cai, You-Zhi ;
Zhang, Guo-Rong ;
Wang, Lin-Lin ;
Jiang, Yang-Zi ;
Ouyang, Hong-Wei ;
Zou, Xiao-Hui .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2012, 100A (05) :1187-1194
[7]   Cell interactions with three-dimensional matrices [J].
Cukierman, E ;
Pankov, R ;
Yamada, KM .
CURRENT OPINION IN CELL BIOLOGY, 2002, 14 (05) :633-639
[8]   Modelling glandular epithelial cancers in three-dimensional cultures [J].
Debnath, J ;
Brugge, JS .
NATURE REVIEWS CANCER, 2005, 5 (09) :675-688
[9]   Hydrogels for tissue engineering: scaffold design variables and applications [J].
Drury, JL ;
Mooney, DJ .
BIOMATERIALS, 2003, 24 (24) :4337-4351
[10]   Nanotechnological strategies for engineering complex tissues [J].
Dvir, Tal ;
Timko, Brian P. ;
Kohane, Daniel S. ;
Langer, Robert .
NATURE NANOTECHNOLOGY, 2011, 6 (01) :13-22