Tuning the Dimensions of ZnO Nanorod Arrays for Application in Hybrid Photovoltaics

被引:14
作者
Baeten, Linny [1 ]
Conings, Bert [2 ]
D'Haen, Jan [2 ,3 ]
De Dobbelaere, Christopher [1 ]
Hardy, An [1 ,3 ]
Manca, Jean V. [2 ,3 ]
Van Bael, Marlies K. [1 ,3 ]
机构
[1] Hasselt Univ, Inst Mat Res Inorgan & Phys Chem, B-3590 Diepenbeek, Belgium
[2] Hasselt Univ, Inst Mat Res, B-3590 Diepenbeek, Belgium
[3] Imec Vzw Devis IMOMEC, B-3590 Diepenbeek, Belgium
关键词
conjugated polymers; energy conversion; hydrothermal growth; nanostructures; solar cells; THIN-FILMS; POLYMER; NANOWIRES; NANOSTRUCTURES; DEPOSITION; DEVICES; GROWTH;
D O I
10.1002/cphc.201200102
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
ZnO nanorod arrays are a very eligible option as electron acceptor material in hybrid solar cells, owing to their favorable electrical properties and abundance of available, easy, and low-cost synthesis methods. To become truly effective in this field, a major prerequisite is the ability to tune the nanorod dimensions towards optimal compatibility with electron-donating absorber materials. In this work, a water-based seeding and growth procedure is used to synthesize ZnO nanorods. The nanorod diameter is tuned either by modifying the zinc concentration of the seeding solution or by changing the concentration of the hydrothermal growth solution. The consequences of this morphological tailoring in the performance of hybrid solar cells are investigated, which leads to a new record efficiency of 0.82?% for hydrothermally grown ZnO nanorods of size 300 nm in combination with poly(3-hexylthiophene-2,5-diyl) (P3HT). This improvement is attributed to a combined effect of nanorod diameter and orientation, and possibly to a better alignment of the P3HT backbone resulting in improved charge transport.
引用
收藏
页码:2777 / 2783
页数:7
相关论文
共 30 条
[1]   Towards Efficient Hybrid Solar Cells Based on Fully Polymer Infiltrated ZnO Nanorod Arrays [J].
Baeten, Linny ;
Conings, Bert ;
Boyen, Hans-Gerd ;
D'Haen, Jan ;
Hardy, An ;
D'Olieslaeger, Marc ;
Manca, Jean V. ;
Van Bael, Marlies K. .
ADVANCED MATERIALS, 2011, 23 (25) :2802-+
[2]   Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells [J].
Baxter, J. B. ;
Walker, A. M. ;
van Ommering, K. ;
Aydil, E. S. .
NANOTECHNOLOGY, 2006, 17 (11) :S304-S312
[3]   Hybrid polymer solar cells based on zinc oxide [J].
Beek, WJE ;
Wienk, MM ;
Janssen, RAJ .
JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (29) :2985-2988
[4]   Hybrid polymer-metal oxide thin films for photovoltaic applications [J].
Boucle, Johann ;
Ravirajan, Punniamoorthy ;
Nelson, Jenny .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (30) :3141-3153
[5]   Influence of Interface Morphology onto the Photovoltaic Properties of Nanopatterned ZnO/Poly(3-hexylthiophene) Hybrid Solar Cells. An Impedance Spectroscopy Study [J].
Conings, Bert ;
Baeten, Linny ;
Boyen, Hans-Gerd ;
Spoltore, Donato ;
D'Haen, Jan ;
Grieten, Lars ;
Wagner, Patrick ;
Van Bael, Marlies K. ;
Manca, Jean V. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (33) :16695-16700
[6]   General route to vertical ZnO nanowire arrays using textured ZnO seeds [J].
Greene, LE ;
Law, M ;
Tan, DH ;
Montano, M ;
Goldberger, J ;
Somorjai, G ;
Yang, PD .
NANO LETTERS, 2005, 5 (07) :1231-1236
[7]   Low-temperature wafer-scale production of ZnO nanowire arrays [J].
Greene, LE ;
Law, M ;
Goldberger, J ;
Kim, F ;
Johnson, JC ;
Zhang, YF ;
Saykally, RJ ;
Yang, PD .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (26) :3031-3034
[8]   Hybrid solar cells [J].
Guenes, Serap ;
Sariciftci, Niyazi Serdar .
INORGANICA CHIMICA ACTA, 2008, 361 (03) :581-588
[9]   WSXM:: A software for scanning probe microscopy and a tool for nanotechnology [J].
Horcas, I. ;
Fernandez, R. ;
Gomez-Rodriguez, J. M. ;
Colchero, J. ;
Gomez-Herrero, J. ;
Baro, A. M. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (01)
[10]   Applications of ZnO in organic and hybrid solar cells [J].
Huang, Jia ;
Yin, Zhigang ;
Zheng, Qingdong .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (10) :3861-3877