Topological Recurrent Neural Network for Diffusion Prediction

被引:133
作者
Wang, Jia [1 ]
Zheng, Vincent W. [2 ]
Liu, Zemin [3 ]
Chang, Kevin Chen-Chuan [1 ]
机构
[1] Univ Illinois, Urbana, IL 61801 USA
[2] Adv Digital Sci Ctr, Singapore, Singapore
[3] Zhejiang Univ, Hangzhou, Zhejiang, Peoples R China
来源
2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM) | 2017年
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
D O I
10.1109/ICDM.2017.57
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we study the problem of using representation learning to assist information diffusion prediction on graphs. In particular, we aim at estimating the probability of an inactive node to be activated next in a cascade. Despite the success of recent deep learning methods for diffusion, we find that they often underexplore the cascade structure. We consider a cascade as not merely a sequence of nodes ordered by their activation time stamps; instead, it has a richer structure indicating the diffusion process over the data graph. As a result, we introduce a new data model, namely diffusion topologies, to fully describe the cascade structure. We find it challenging to model diffusion topologies, which are dynamic directed acyclic graphs (DAGs), with the existing neural networks. Therefore, we propose a novel topological recurrent neural network, namely Topo-LSTM, for modeling dynamic DAGs. We customize Topo-LSTM for the diffusion prediction task, and show it improves the state-of-the-art baselines, by 20.1%-56.6% (MAP) relatively, across multiple real-world data sets.
引用
收藏
页码:475 / 484
页数:10
相关论文
共 39 条
  • [11] Recursive neural networks for processing graphs with labelled edges: theory and applications
    Bianchini, M
    Maggini, M
    Sarti, L
    Scarselli, F
    [J]. NEURAL NETWORKS, 2005, 18 (08) : 1040 - 1050
  • [12] Borgs C., 2014, P 25 ANN ACM SIAM S, P946, DOI [DOI 10.1137/1.9781611973402.70, 10.1137/1.9781611973402.70]
  • [13] Representation Learning for Information Diffusion through Social Networks: an Embedded Cascade Model
    Bourigault, Simon
    Lamprier, Sylvain
    Gallinari, Patrick
    [J]. PROCEEDINGS OF THE NINTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'16), 2016, : 573 - 582
  • [14] Can Cascades be Predicted?
    Cheng, Justin
    Adamic, Lada A.
    Dow, P. Alex
    Kleinberg, Jon
    Leskovec, Jure
    [J]. WWW'14: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, 2014, : 925 - 935
  • [15] Chung Junyoung, 2014, Empirical evaluation of gated recurrent neural networks on sequence modeling
  • [16] Recurrent Marked Temporal Point Processes: Embedding Event History to Vector
    Du, Nan
    Dai, Hanjun
    Trivedi, Rakshit
    Upadhyay, Utkarsh
    Gomez-Rodriguez, Manuel
    Song, Le
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 1555 - 1564
  • [17] Du N, 2014, PR MACH LEARN RES, V32, P2016
  • [18] node2vec: Scalable Feature Learning for Networks
    Grover, Aditya
    Leskovec, Jure
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 855 - 864
  • [19] Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
  • [20] Hodas N. O., 2013, ARXIV13085015