Biosensor design based on Marangoni flow in an evaporating drop

被引:77
作者
Trantum, Joshua R. [1 ]
Baglia, Mark L. [1 ]
Eagleton, Zachary E. [1 ]
Mernaugh, Raymond L. [2 ]
Haselton, Frederick R. [1 ]
机构
[1] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Dept Biochem, Nashville, TN 37235 USA
关键词
OPTICAL COHERENCE TOMOGRAPHY; SESSILE DROPLET; MICROFLUIDICS; IMMUNOASSAY; HEALTH;
D O I
10.1039/c3lc50991e
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Effective point-of-care diagnostics require a biomarker detection strategy that is low-cost and simple-to-use while achieving a clinically relevant limit of detection. Here we report a biosensor that uses secondary flows arising from surface Marangoni stresses in an evaporating drop to concentrate target-mediated particle aggregates in a visually detectable spot. The spot size increases with increasing target concentration within the dynamic range of the assay. The particle deposition patterns are visually detectable and easily measured with simple optical techniques. We use optical coherence tomography to characterize the effect of cross-sectional flow fields on the motion of particles in the presence and absence of target (aggregated and non-aggregated particles, respectively). We show that choice of substrate material and the presence of salts and glycerol in solution promote the Marangoni-induced flows that are necessary to produce signal in the proposed design. These evaporation-driven flows generate signal in the assay on a PDMS substrate but not substrates with greater thermal conductivity like indium tin oxide-coated glass. In this proof-of-concept design we use the M13K07 bacteriophage as a model target and 1 mu m-diameter particles surface functionalized with anti-M13 monoclonal antibodies. Using standard microscopy-based techniques to measure the final spot size, the assay has a calculated limit-of-detection of approximately 100 fM. Approximately 80% of the maximum signal is generated within 10 minutes of depositing a 1 mu L drop of reacted sample on PDMS enabling a relatively quick time-to-result.
引用
收藏
页码:315 / 324
页数:10
相关论文
共 31 条
[1]   Thermal transport properties of polycrystalline tin-doped indium oxide films [J].
Ashida, Toru ;
Miyamura, Amica ;
Oka, Nobuto ;
Sato, Yasushi ;
Yagi, Takashi ;
Taketoshi, Naoyuki ;
Baba, Tetsuya ;
Shigesato, Yuzo .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (07)
[2]   Evaporation and fluid dynamics of a sessile drop of capillary size [J].
Barash, L. Yu. ;
Bigioni, T. P. ;
Vinokur, V. M. ;
Shchur, L. N. .
PHYSICAL REVIEW E, 2009, 79 (04)
[3]   Imaging the drying of a colloidal suspension: Velocity field [J].
Bodiguel, H. ;
Leng, J. .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2013, 68 :60-63
[4]   Imaging the drying of a colloidal suspension [J].
Bodiguel, Hugues ;
Leng, Jacques .
SOFT MATTER, 2010, 6 (21) :5451-5460
[5]   Pattern formation in drying drops of blood [J].
Brutin, D. ;
Sobac, B. ;
Loquet, B. ;
Sampol, J. .
JOURNAL OF FLUID MECHANICS, 2011, 667 :85-95
[6]   Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits [J].
Cho, SK ;
Moon, HJ ;
Kim, CJ .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2003, 12 (01) :70-80
[7]   Contact line deposits in an evaporating drop [J].
Deegan, RD ;
Bakajin, O ;
Dupont, TF ;
Huber, G ;
Nagel, SR ;
Witten, TA .
PHYSICAL REVIEW E, 2000, 62 (01) :756-765
[8]   Pattern formation in drying drops [J].
Deegan, RD .
PHYSICAL REVIEW E, 2000, 61 (01) :475-485
[9]   Capillary flow as the cause of ring stains from dried liquid drops [J].
Deegan, RD ;
Bakajin, O ;
Dupont, TF ;
Huber, G ;
Nagel, SR ;
Witten, TA .
NATURE, 1997, 389 (6653) :827-829
[10]   Ultrahigh-resolution optical coherence tomography [J].
Drexler, W .
JOURNAL OF BIOMEDICAL OPTICS, 2004, 9 (01) :47-74