Target detection and characterization from electromagnetic induction data

被引:48
作者
Ammari, Habib [1 ]
Chen, Junqing [2 ]
Chen, Zhiming [3 ]
Garnier, Josselin [4 ,5 ]
Volkov, Darko [6 ]
机构
[1] Ecole Normale Super, Dept Math & Applicat, F-75005 Paris, France
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[3] Chinese Acad Sci, LSEC, Inst Computat Math, Beijing 100190, Peoples R China
[4] Univ Paris 08, Lab Probabilites & Modeles Aleatoires, F-75205 Paris 13, France
[5] Univ Paris 08, Lab Jacques Louis Lions, F-75205 Paris 13, France
[6] Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2014年 / 101卷 / 01期
关键词
Eddy current imaging; Induction data; Detection test; Defect localization; Hadamard technique; LARGEST EIGENVALUE; SMALL-DIAMETER; IDENTIFICATION;
D O I
10.1016/j.matpur.2013.05.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this paper is to contribute to the field of nondestructive testing by eddy currents. We provide a mathematical analysis and a numerical framework for simulating the imaging of arbitrarily shaped small-volume conductive inclusions from electromagnetic induction data. We derive, with proof, a small-volume expansion of the eddy current data measured away from the conductive inclusion. The formula involves two polarization tensors: one associated with the magnetic contrast and the second with the conductivity of the inclusion. Based on this new formula, we design a location search algorithm. We include in this paper a discussion on data sampling, noise reduction, and probability of detection. We provide numerical examples that support our findings. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:54 / 75
页数:22
相关论文
共 26 条
[1]   The leading-order term in the asymptotic expansion of the scattering amplitude of a collection of finite number of dielectric inhomogeneities of small diameter [J].
Ammari, H ;
Volkov, D .
INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2005, 3 (03) :285-295
[2]   A justification of eddy currents model for the Maxwell equations [J].
Ammari, H ;
Buffa, A ;
Nédélec, JC .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (05) :1805-1823
[3]   Electromagnetic scattering by small dielectric inhomogeneities [J].
Ammari, H ;
Khelifi, A .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (07) :749-842
[4]   Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II. The full Maxwell equations [J].
Ammari, H ;
Vogelius, MS ;
Volkov, D .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (08) :769-814
[5]  
Ammari H., 2007, Applied Mathematical Sciences
[6]  
Ammari H., ARXIV12043035
[7]  
Ammari H., ARXIV13026384
[8]   Music-type electromagnetic imaging of a collection of small three-dimensional inclusions [J].
Ammari, Habib ;
Iakovleva, Ekaterina ;
Lesselier, Dominique ;
Perrusson, Gaele .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (02) :674-709
[9]   A statistical approach to target detection and localization in the presence of noise [J].
Ammari, Habib ;
Garnier, Josselin ;
Solna, Knut .
WAVES IN RANDOM AND COMPLEX MEDIA, 2012, 22 (01) :40-65
[10]   IMAGING SCHEMES FOR PERFECTLY CONDUCTING CRACKS [J].
Ammari, Habib ;
Garnier, Josselin ;
Kang, Hyonbae ;
Park, Won-Kwang ;
Solna, Knut .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (01) :68-91