Stability analysis for a nonlinear model of a hydraulic servomechanism in a servoelastic framework

被引:14
作者
Halanay, A. [1 ]
Safta, C. A. [2 ]
Ursu, F. [3 ]
Ursu, I. [3 ]
机构
[1] Univ Politehn Bucuresti, Dept Math 1, RO-060042 Bucharest, Romania
[2] Univ Politehn Bucuresti, Dept Hydraul & Hydraul Machinery, RO-060042 Bucharest, Romania
[3] Elie Carafoli Natl Inst Aerosp Res, RO-061126 Bucharest, Romania
关键词
Hydraulic servomechanism; Servoelasticity; Lyapunov stability; Routh-Hurwitz criterion; FEEDBACK LINEARIZATION;
D O I
10.1016/j.nonrwa.2007.12.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The effects of mounting structure stiffness on mechano-hydraulic servomechanisms actuating aircraft primary flight controls are modeled by a six-dimensional nonlinear system of ordinary differential equations. Stability analysis of equilibria reveals the presence of a critical case that is handled through the use of the Lyapunov-Malkin theorem. Stability charts are drawn using the Routh-Hurwitz criterion for the stability of a fifth-degree polynomial. Comparison with previous results shows how the stability of equilibria can be ensured exploiting the positive influence of structural feedback. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1197 / 1209
页数:13
相关论文
共 32 条
[1]  
Blackburn J., 1960, FLUID POWER CONTROL
[2]  
BRAND L, 1966, DIFFERENTIAL DIFFERE
[3]  
BRENNER MJ, 1996, 3647 NASA
[4]  
Bu FP, 2001, IEEE INT CONF ROBOT, P3459, DOI 10.1109/ROBOT.2001.933153
[5]  
GAMYNIN NS, 1972, HYDRAULIC AUTOMATIC
[6]  
Guillon M., 1972, ASSERVISSEMENT HYDRA, VI-II
[7]   Stabilization of some nonlinear controlled electrohydraulic servosystems [J].
Halanay, A ;
Safta, CA .
APPLIED MATHEMATICS LETTERS, 2005, 18 (08) :911-915
[8]   Stability of equilibria in a four-dimensional nonlinear model of a hydraulic servomechanism [J].
Halanay, A ;
Safta, CA ;
Ursu, I ;
Ursu, F .
JOURNAL OF ENGINEERING MATHEMATICS, 2004, 49 (04) :391-406
[9]  
HALANAY A, 2005, ICNPAA 2004, P243
[10]  
Halanay A., 2007, MATH REP, V9, P47