Improved anode materials for lithium-ion batteries comprise non-covalently bonded graphene and silicon nanoparticles

被引:65
|
作者
Ye, Yun-Sheng [1 ,2 ]
Xie, Xiao-Lin [3 ]
Rick, John [1 ]
Chang, Feng-Chih [2 ]
Hwang, Bing-Joe [1 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Chem Engn, Taipei, Taiwan
[2] Nation Sun Yat Sen Univ, Dept Mat & Optoelect Sci, Kaohsiung, Taiwan
[3] Huazhong Univ Sci & Technol, Sch Chem & Chem Engn, Wuhan 430074, Peoples R China
关键词
Anode materials; Lithium-ion battery; Non-covalently bonded; Graphene; SI NANOPARTICLES; NANOCOMPOSITE; PERFORMANCE; STORAGE; SHEETS; ELECTRODE; FILMS;
D O I
10.1016/j.jpowsour.2013.08.048
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Si, when compared to conventional graphite, offers an order-of-magnitude improvement as a high capacity anode material for Li-ion batteries. Despite significant advances in nanostructured Si-based anodes, the formation of stable Si anodes remains a challenge, due to the significant volume changes that occur during lithiation and delithiation. Si/graphene composites, with graphene sheets and Si nanoparticles bound in a dispersion obtained by a self-assembly technique using non-covalent electrostatic attraction (following thermal processing to remove residual organic material), are used to prepare Si-based anodes for use in Li-ion batteries. A mesoporous structure, obtained by further thermal processing is able to accommodate large Si nanoparticle volume changes during cycling, thereby facilitating Li-ion diffusion within the electrode. Morphological analysis showed that Si nanoparticles are homogeneously distributed on the graphene sheets, which is thought to account for the excellent electrochemical performance of the resulting Si/graphene composite. A composite containing Si 67.3 wt% exhibits a greatly improved capacity and cycling stability in comparison with bare Si in combination with the thermal reduction of a simple mixture of graphene oxide and Si nanoparticles without electrostatic attraction (Si content = 64.6 wt%; capacity of 512 mAh g(-1) in 40th cycle). Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:991 / 998
页数:8
相关论文
共 50 条
  • [21] Metal Oxide/graphene composite anode materials for lithium-ion batteries
    LIANG JunFei
    ZHOU Jing
    GUO Lin
    Science Foundation in China, 2013, 21 (01) : 59 - 72
  • [22] Flower-like SnO2 nanoparticles grown on graphene as anode materials for lithium-ion batteries
    Guo, Qi
    Qin, Xue
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (04) : 1031 - 1039
  • [23] Applications of graphene-based composites in the anode of lithium-ion batteries
    Liu, Zhiming
    Tian, Yu
    Wang, Peng
    Zhang, Guoxin
    FRONTIERS IN NANOTECHNOLOGY, 2022, 4
  • [24] Overview of Graphene as Anode in Lithium-Ion Batteries
    Ri-Peng Luo
    Wei-Qiang Lyu
    Ke-Chun Wen
    Wei-Dong He
    Journal of Electronic Science and Technology, 2018, 16 (01) : 57 - 68
  • [25] Silicon/carbon nanocomposites used as anode materials for lithium-ion batteries
    Yingqiong Yong
    Li-Zhen Fan
    Ionics, 2013, 19 : 1545 - 1549
  • [26] Research progress in silicon based anode materials for lithium-ion batteries
    Zhao Jishi
    He Xiangming
    Wan Chunrong
    Jiang Changyin
    RARE METAL MATERIALS AND ENGINEERING, 2007, 36 (08) : 1490 - 1494
  • [27] A review of the carbon coating of the silicon anode in highperformance lithium-ion batteries
    Xu, Ze-yu
    Shao, Hai-bo
    Wang, Jian-ming
    NEW CARBON MATERIALS, 2024, 39 (05) : 896 - 917
  • [28] First-principles studies on doped graphene as anode materials in lithium-ion batteries
    Wu, D. H.
    Li, Y. F.
    Zhou, Z.
    THEORETICAL CHEMISTRY ACCOUNTS, 2011, 130 (2-3) : 209 - 213
  • [29] Reduced Graphene Oxide Encapsulated N-type Si Nanoparticles as Anode for Lithium-ion Batteries
    Luo, Zhongwei
    Ding, Taotao
    Dai, Jiangnai
    Chen, Changqing
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (06): : 4794 - 4801
  • [30] Functionalized bioinspired porous carbon with graphene sheets as anode materials for lithium-ion batteries
    Imtiaz, Muhammad
    Zhu, Chengling
    Li, Yao
    Pak, MyongSop
    Zada, Imran
    Bokhari, Syeda Wishal
    Chen, Zhixin
    Zhang, Di
    Zhu, Shenmin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 724 : 296 - 305