Improved anode materials for lithium-ion batteries comprise non-covalently bonded graphene and silicon nanoparticles

被引:65
|
作者
Ye, Yun-Sheng [1 ,2 ]
Xie, Xiao-Lin [3 ]
Rick, John [1 ]
Chang, Feng-Chih [2 ]
Hwang, Bing-Joe [1 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Chem Engn, Taipei, Taiwan
[2] Nation Sun Yat Sen Univ, Dept Mat & Optoelect Sci, Kaohsiung, Taiwan
[3] Huazhong Univ Sci & Technol, Sch Chem & Chem Engn, Wuhan 430074, Peoples R China
关键词
Anode materials; Lithium-ion battery; Non-covalently bonded; Graphene; SI NANOPARTICLES; NANOCOMPOSITE; PERFORMANCE; STORAGE; SHEETS; ELECTRODE; FILMS;
D O I
10.1016/j.jpowsour.2013.08.048
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Si, when compared to conventional graphite, offers an order-of-magnitude improvement as a high capacity anode material for Li-ion batteries. Despite significant advances in nanostructured Si-based anodes, the formation of stable Si anodes remains a challenge, due to the significant volume changes that occur during lithiation and delithiation. Si/graphene composites, with graphene sheets and Si nanoparticles bound in a dispersion obtained by a self-assembly technique using non-covalent electrostatic attraction (following thermal processing to remove residual organic material), are used to prepare Si-based anodes for use in Li-ion batteries. A mesoporous structure, obtained by further thermal processing is able to accommodate large Si nanoparticle volume changes during cycling, thereby facilitating Li-ion diffusion within the electrode. Morphological analysis showed that Si nanoparticles are homogeneously distributed on the graphene sheets, which is thought to account for the excellent electrochemical performance of the resulting Si/graphene composite. A composite containing Si 67.3 wt% exhibits a greatly improved capacity and cycling stability in comparison with bare Si in combination with the thermal reduction of a simple mixture of graphene oxide and Si nanoparticles without electrostatic attraction (Si content = 64.6 wt%; capacity of 512 mAh g(-1) in 40th cycle). Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:991 / 998
页数:8
相关论文
共 50 条
  • [1] Firmly bonded graphene-silicon nanocomposites as high-performance anode materials for lithium-ion batteries
    Chen, Yifan
    Du, Ning
    Zhang, Hui
    Yang, Deren
    RSC ADVANCES, 2015, 5 (57): : 46173 - 46180
  • [2] Graphene composites as anode materials in lithium-ion batteries
    M. Mazar Atabaki
    R. Kovacevic
    Electronic Materials Letters, 2013, 9 : 133 - 153
  • [3] VSe2/graphene nanocomposites as anode materials for lithium-ion batteries
    Wang, Yaping
    Qian, Binbin
    Li, Huanhuan
    Liu, Liang
    Chen, Long
    Jiang, Haobin
    MATERIALS LETTERS, 2015, 141 : 35 - 38
  • [4] Graphene Composites as Anode Materials in Lithium-Ion Batteries
    Atabaki, M. Mazar
    Kovacevic, R.
    ELECTRONIC MATERIALS LETTERS, 2013, 9 (02) : 133 - 153
  • [5] Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries
    Zhou, Xiaosi
    Yin, Ya-Xia
    Wan, Li-Jun
    Guo, Yu-Guo
    CHEMICAL COMMUNICATIONS, 2012, 48 (16) : 2198 - 2200
  • [6] Silicon/carbon nanocomposites used as anode materials for lithium-ion batteries
    Yong, Yingqiong
    Fan, Li-Zhen
    IONICS, 2013, 19 (11) : 1545 - 1549
  • [7] A Novel Tin-Bonded Silicon Anode for Lithium-Ion Batteries
    Dong, Zhe
    Du, Wubin
    Yan, Chenhui
    Zhang, Chenyang
    Chen, Gairong
    Chen, Jian
    Sun, Wenping
    Jiang, Yinzhu
    Liu, Yongfeng
    Gao, Mingxia
    Gan, Jiantuo
    Yang, Yaxiong
    Pan, Hongge
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (38) : 45578 - 45588
  • [8] CuO/graphene composite as anode materials for lithium-ion batteries
    Mai, Y. J.
    Wang, X. L.
    Xiang, J. Y.
    Qiao, Y. Q.
    Zhang, D.
    Gu, C. D.
    Tu, J. P.
    ELECTROCHIMICA ACTA, 2011, 56 (05) : 2306 - 2311
  • [9] Submicron silicon encapsulated with graphene and carbon as a scalable anode for lithium-ion batteries
    Lee, Byeongyong
    Liu, Tianyuan
    Kim, Sun Kyung
    Chang, Hankwon
    Eom, Kwangsup
    Xie, Lixin
    Chen, Shuo
    Jang, Hee Dong
    Lee, Seung Woo
    CARBON, 2017, 119 : 438 - 445
  • [10] Silicon nanoparticles grown on a reduced graphene oxide surface as high-performance anode materials for lithium-ion batteries
    Kannan, Aravindaraj G.
    Kim, Sang Hyung
    Yang, Hwi Soo
    Kim, Dong-Won
    RSC ADVANCES, 2016, 6 (30): : 25159 - 25166