Improved anode materials for lithium-ion batteries comprise non-covalently bonded graphene and silicon nanoparticles

被引:65
|
作者
Ye, Yun-Sheng [1 ,2 ]
Xie, Xiao-Lin [3 ]
Rick, John [1 ]
Chang, Feng-Chih [2 ]
Hwang, Bing-Joe [1 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Chem Engn, Taipei, Taiwan
[2] Nation Sun Yat Sen Univ, Dept Mat & Optoelect Sci, Kaohsiung, Taiwan
[3] Huazhong Univ Sci & Technol, Sch Chem & Chem Engn, Wuhan 430074, Peoples R China
关键词
Anode materials; Lithium-ion battery; Non-covalently bonded; Graphene; SI NANOPARTICLES; NANOCOMPOSITE; PERFORMANCE; STORAGE; SHEETS; ELECTRODE; FILMS;
D O I
10.1016/j.jpowsour.2013.08.048
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Si, when compared to conventional graphite, offers an order-of-magnitude improvement as a high capacity anode material for Li-ion batteries. Despite significant advances in nanostructured Si-based anodes, the formation of stable Si anodes remains a challenge, due to the significant volume changes that occur during lithiation and delithiation. Si/graphene composites, with graphene sheets and Si nanoparticles bound in a dispersion obtained by a self-assembly technique using non-covalent electrostatic attraction (following thermal processing to remove residual organic material), are used to prepare Si-based anodes for use in Li-ion batteries. A mesoporous structure, obtained by further thermal processing is able to accommodate large Si nanoparticle volume changes during cycling, thereby facilitating Li-ion diffusion within the electrode. Morphological analysis showed that Si nanoparticles are homogeneously distributed on the graphene sheets, which is thought to account for the excellent electrochemical performance of the resulting Si/graphene composite. A composite containing Si 67.3 wt% exhibits a greatly improved capacity and cycling stability in comparison with bare Si in combination with the thermal reduction of a simple mixture of graphene oxide and Si nanoparticles without electrostatic attraction (Si content = 64.6 wt%; capacity of 512 mAh g(-1) in 40th cycle). Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:991 / 998
页数:8
相关论文
共 50 条
  • [1] Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries
    Zhou, Xiaosi
    Yin, Ya-Xia
    Wan, Li-Jun
    Guo, Yu-Guo
    CHEMICAL COMMUNICATIONS, 2012, 48 (16) : 2198 - 2200
  • [2] Graphene Nanoscrolls with Confined Silicon Nanoparticles as a Durable Anode for Lithium-Ion Batteries
    Wu, Yongkang
    Fu, Rusheng
    Fan, Chongzhao
    Long, Zuxin
    Shao, Guangjie
    Liu, Zhaoping
    CHEMNANOMAT, 2019, 5 (06) : 748 - 753
  • [3] Graphene-encapsulated silicon nanoparticles as an anode material for lithium-ion batteries
    Sangare, Moussa
    Fodjouong, Ghislain Joel
    Huang, Xintang
    MENDELEEV COMMUNICATIONS, 2013, 23 (05) : 284 - 285
  • [4] Electrochemical Performance of Silicon/Graphene Nanocomposites Anode Materials for Lithium-ion Batteries
    Xiao S.
    Xie X.
    Xie Y.
    Liu B.
    Liu D.
    Shi Z.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2019, 47 (09): : 1327 - 1334
  • [5] Firmly bonded graphene-silicon nanocomposites as high-performance anode materials for lithium-ion batteries
    Chen, Yifan
    Du, Ning
    Zhang, Hui
    Yang, Deren
    RSC ADVANCES, 2015, 5 (57): : 46173 - 46180
  • [6] Graphene composites as anode materials in lithium-ion batteries
    M. Mazar Atabaki
    R. Kovacevic
    Electronic Materials Letters, 2013, 9 : 133 - 153
  • [7] Graphene Composites as Anode Materials in Lithium-Ion Batteries
    Atabaki, M. Mazar
    Kovacevic, R.
    ELECTRONIC MATERIALS LETTERS, 2013, 9 (02) : 133 - 153
  • [8] A novel anode material for lithium-ion batteries: silicon nanoparticles and graphene composite films
    Zhang, P. B.
    You, Y.
    Wang, C.
    Fang, X. H.
    Ren, W.
    Yang, L. Y.
    Chen, X. Y.
    2019 INTERNATIONAL CONFERENCE ON NEW ENERGY AND FUTURE ENERGY SYSTEM, 2019, 354
  • [9] A Novel Tin-Bonded Silicon Anode for Lithium-Ion Batteries
    Dong, Zhe
    Du, Wubin
    Yan, Chenhui
    Zhang, Chenyang
    Chen, Gairong
    Chen, Jian
    Sun, Wenping
    Jiang, Yinzhu
    Liu, Yongfeng
    Gao, Mingxia
    Gan, Jiantuo
    Yang, Yaxiong
    Pan, Hongge
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (38) : 45578 - 45588
  • [10] CuO/graphene composite as anode materials for lithium-ion batteries
    Mai, Y. J.
    Wang, X. L.
    Xiang, J. Y.
    Qiao, Y. Q.
    Zhang, D.
    Gu, C. D.
    Tu, J. P.
    ELECTROCHIMICA ACTA, 2011, 56 (05) : 2306 - 2311