Three-dimensional Bondi-Metzner-Sachs invariant two-dimensional field theories as the flat limit of Liouville theory

被引:110
作者
Barnich, Glenn [1 ,2 ]
Gomberoff, Andres [3 ]
Gonzalez, Hernan A. [4 ]
机构
[1] Univ Libre Bruxelles, B-1050 Brussels, Belgium
[2] Int Solvay Inst, B-1050 Brussels, Belgium
[3] Univ Andres Bello, Dept Ciencias Fis, Santiago, Chile
[4] Pontificia Univ Catolica Chile, Dept Fis, Santiago 22, Chile
来源
PHYSICAL REVIEW D | 2013年 / 87卷 / 12期
关键词
ASYMPTOTIC SYMMETRIES; GRAVITY;
D O I
10.1103/PhysRevD.87.124032
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the gravitational context, Liouville theory is the two-dimensional conformal field theory that controls the boundary dynamics of asymptotically AdS(3) spacetimes at the classical level. By taking a suitable limit of the coupling constants of the Hamiltonian formulation of Liouville, we construct and analyze a BMS3 invariant two-dimensional field theory that is likely to control the boundary dynamics at null infinity of threedimensional asymptotically flat gravity.
引用
收藏
页数:7
相关论文
共 18 条
[1]   A CHERN-SIMONS ACTION FOR 3-DIMENSIONAL ANTI-DESITTER SUPERGRAVITY THEORIES [J].
ACHUCARRO, A ;
TOWNSEND, PK .
PHYSICS LETTERS B, 1986, 180 (1-2) :89-92
[2]   Large N field theories, string theory and gravity [J].
Aharony, O ;
Gubser, SS ;
Maldacena, J ;
Ooguri, H ;
Oz, Y .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 323 (3-4) :183-386
[3]   Asymptotic structure of symmetry-reduced general relativity [J].
Ashtekar, A ;
Bicak, J ;
Schmidt, BG .
PHYSICAL REVIEW D, 1997, 55 (02) :669-686
[4]  
Bagchi A., ARXIV12084372
[5]  
Barnich G., ARXIV12084371
[6]   Classical central extension for asymptotic symmetries at null infinity in three spacetime dimensions [J].
Barnich, Glenn ;
Compere, Geoffrey .
CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (05) :F15-F23
[7]   Flat limit of three dimensional asymptotically anti-de Sitter spacetimes [J].
Barnich, Glenn ;
Gomberoff, Andres ;
Gonzalez, Hernan A. .
PHYSICAL REVIEW D, 2012, 86 (02)
[8]   Aspects of the BMS/CFT correspondence [J].
Barnich, Glenn ;
Troessaert, Cedric .
JOURNAL OF HIGH ENERGY PHYSICS, 2010, (05)
[9]   AN EXACT OPERATOR SOLUTION OF THE QUANTUM LIOUVILLE FIELD-THEORY [J].
BRAATEN, E ;
CURTRIGHT, T ;
THORN, C .
ANNALS OF PHYSICS, 1983, 147 (02) :365-416
[10]  
BRAATEN E, 1982, PHYS LETT B, V118, P116