Durability of Kinase-Directed Therapies-A Network Perspective on Response and Resistance

被引:21
作者
Murray, Brion W. [1 ]
Miller, Nichol [1 ]
机构
[1] Pfizer Worldwide Res & Dev, Oncol Res Unit, San Diego, CA 92121 USA
关键词
CANCER-CELL-LINES; CHRONIC MYELOID-LEUKEMIA; CIRCULATING TUMOR-CELLS; RECEPTOR TYROSINE KINASE; INDUCED DRUG-RESISTANCE; BRAF-MUTANT MELANOMA; ACQUIRED-RESISTANCE; CLINICAL-IMPLICATIONS; ONCOGENE ADDICTION; 1ST-LINE THERAPY;
D O I
10.1158/1535-7163.MCT-15-0088
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Protein kinase-directed cancer therapies yield impressive initial clinical responses, but the benefits are typically transient. Enhancing the durability of clinical response is dependent upon patient selection, using drugs with more effective pharmacology, anticipating mechanisms of drug resistance, and applying concerted drug combinations. Achieving these tenets requires an understanding of the targeted kinase's role in signaling networks, how the network responds to drug perturbation, and patient-to-patient network variations. Protein kinases create sophisticated, malleable signaling networks with fidelity coded into the processes that regulate their presence and function. Robust and reliable signaling is facilitated through network processes (e.g., feedback regulation, and compensatory signaling). The routine use of kinase-directed therapies and advancements in both genomic analysis and tumor cell biology are illuminating the complexity of tumor network biology and its capacity to respond to perturbations. Drug efficacy is attenuated by alterations of the drug target (e.g., steric interference, compensatory activity, and conformational changes), compensatory signaling (bypass mechanisms and phenotype switching), and engagement of other oncogenic capabilities (polygenic disease). Factors influencing anticancer drug response and resistance are examined to define the behavior of kinases in network signaling, mechanisms of drug resistance, drug combinations necessary for durable clinical responses, and strategies to identify mechanisms of drug resistance. (C) 2015 AACR.
引用
收藏
页码:1975 / 1984
页数:10
相关论文
共 106 条
[1]   Combinatorial drug therapy for cancer in the post-genomic era [J].
Al-Lazikani, Bissan ;
Banerji, Udai ;
Workman, Paul .
NATURE BIOTECHNOLOGY, 2012, 30 (07) :679-691
[2]   Neratinib Graduates to I-SPY 3 [J].
不详 .
CANCER DISCOVERY, 2014, 4 (06) :624-624
[3]   Quantitative Prediction of Fold Resistance for Inhibitors of EGFR [J].
Balius, Trent E. ;
Rizzo, Robert C. .
BIOCHEMISTRY, 2009, 48 (35) :8435-8448
[4]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[5]   Tumor P-glycoprotein correlates with efficacy of PF-3758309 in in vitro and in vivo models of colorectal cancer [J].
Bradshaw-Pierce, Erica Lynn ;
Pitts, Todd M. ;
Tan, Aik-Choon ;
McPhillips, Kelly ;
West, Mark ;
Gustafson, Daniel L. ;
Halsey, Charles ;
Nguyen, Leslie ;
Lee, Nathan V. ;
Kan, Julie L. C. ;
Murray, Brion William ;
Eckhardt, S. Gail .
FRONTIERS IN PHARMACOLOGY, 2013, 4
[6]   Targeting BTK with Ibrutinib in Relapsed Chronic Lymphocytic Leukemia [J].
Byrd, John C. ;
Furman, Richard R. ;
Coutre, Steven E. ;
Flinn, Ian W. ;
Burger, Jan A. ;
Blum, Kristie A. ;
Grant, Barbara ;
Sharman, Jeff P. ;
Coleman, Morton ;
Wierda, William G. ;
Jones, Jeffrey A. ;
Zhao, Weiqiang ;
Heerema, Nyla A. ;
Johnson, Amy J. ;
Sukbuntherng, Juthamas ;
Chang, Betty Y. ;
Clow, Fong ;
Hedrick, Eric ;
Buggy, Joseph J. ;
James, Danelle F. ;
O'Brien, Susan .
NEW ENGLAND JOURNAL OF MEDICINE, 2013, 369 (01) :32-42
[7]   Palbociclib: an evidence-based review of its potential in the treatment of breast cancer [J].
Cadoo, Karen A. ;
Gucalp, Ayca ;
Traina, Tiffany A. .
BREAST CANCER-TARGETS AND THERAPY, 2014, 6 :123-133
[8]   Mining the genomes of exceptional responders [J].
Chang, David K. ;
Grimmond, Sean M. ;
Evans, T. R. Jeffry ;
Biankin, Andrew V. .
NATURE REVIEWS CANCER, 2014, 14 (05) :291-292
[9]   Optimization of Dosing for EGFR-Mutant Non-Small Cell Lung Cancer with Evolutionary Cancer Modeling [J].
Chmielecki, Juliann ;
Foo, Jasmine ;
Oxnard, Geoffrey R. ;
Hutchinson, Katherine ;
Ohashi, Kadoaki ;
Somwar, Romel ;
Wang, Lu ;
Amato, Katherine R. ;
Arcila, Maria ;
Sos, Martin L. ;
Socci, Nicholas D. ;
Viale, Agnes ;
de Stanchina, Elisa ;
Ginsberg, Michelle S. ;
Thomas, Roman K. ;
Kris, Mark G. ;
Inoue, Akira ;
Ladanyi, Marc ;
Miller, Vincent A. ;
Michor, Franziska ;
Pao, William .
SCIENCE TRANSLATIONAL MEDICINE, 2011, 3 (90)
[10]   Patient-derived models of acquired resistance can identify effective drug combinations for cancer [J].
Crystal, Adam S. ;
Shaw, Alice T. ;
Sequist, Lecia V. ;
Friboulet, Luc ;
Niederst, Matthew J. ;
Lockerman, Elizabeth L. ;
Frias, Rosa L. ;
Gainor, Justin F. ;
Amzallag, Arnaud ;
Greninger, Patricia ;
Lee, Dana ;
Kalsy, Anuj ;
Gomez-Caraballo, Maria ;
Elamine, Leila ;
Howe, Emily ;
Hur, Wooyoung ;
Lifshits, Eugene ;
Robinson, Hayley E. ;
Katayama, Ryohei ;
Faber, Anthony C. ;
Awad, Mark M. ;
Ramaswamy, Sridhar ;
Mino-Kenudson, Mari ;
Iafrate, A. John ;
Benes, Cyril H. ;
Engelman, Jeffrey A. .
SCIENCE, 2014, 346 (6216) :1480-1486