Null surfaces and contact geometry

被引:2
作者
Frittelli, S [1 ]
Kamran, N
Kozameh, C
Newman, ET
机构
[1] Duquesne Univ, Dept Phys, Pittsburgh, PA 15282 USA
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
[3] Univ Nacl Cordoba, Fac Math Astron & Phys, RA-5000 Cordoba, Argentina
[4] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA
关键词
null surfaces; Einstein vacuum equations; contact geometry;
D O I
10.1142/S0219891605000506
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a self-contained and geometric account; of a recent approach to the Einstein field equations of general relativity, based on families of null foliations of space-time. We then use exterior differential systems to make explicit the correspondence between conformal Lorentzian geometry in dimensions three and four and the contact geometry of special classes of differential systems.
引用
收藏
页码:481 / 496
页数:16
相关论文
共 20 条
  • [1] BRYANT R, 1991, P S PURE MATH, V53
  • [2] CARTAN E, 1941, REV MAT HISPANO AM, V4, P1
  • [3] CHERN S.-S., 1940, SCI REP NAT TSING HU, V4, P97
  • [4] ON THE DYNAMICS OF CHARACTERISTIC SURFACES
    FRITTELLI, S
    NEWMAN, ET
    KOZAMEH, CN
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (11) : 6397 - 6416
  • [5] Dynamics of light cone cuts of null infinity
    Frittelli, S
    Kozameh, C
    Newman, ET
    [J]. PHYSICAL REVIEW D, 1997, 56 (08): : 4729 - 4744
  • [6] LINEARIZED EINSTEIN THEORY VIA NULL SURFACES
    FRITTELLI, S
    KOZAMEH, CN
    NEWMAN, ET
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (09) : 5005 - 5022
  • [7] LORENTZIAN METRICS FROM CHARACTERISTIC SURFACES
    FRITTELLI, S
    KOZAMEH, C
    NEWMAN, ET
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (09) : 4975 - 4983
  • [8] Conformal Lorentzian metrics on the spaces of curves and 2-surfaces
    Frittelli, S
    Newman, ET
    Nurowski, P
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (16) : 3649 - 3659
  • [9] The eikonal equation, envelopes and contact transformations
    Frittelli, S
    Kamran, N
    Newman, ET
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (14) : 3071 - 3079
  • [10] Differential equations and conformal geometry
    Frittelli, S
    Kamran, N
    Newman, ET
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2002, 43 (2-3) : 133 - 145