Gene selection for enhanced classification on microarray data using a weighted k-NN based algorithm

被引:6
作者
Ventura-Molina, Elias [1 ]
Alarcon-Paredes, Antonio [2 ]
Aldape-Perez, Mario [3 ]
Yanez-Marquez, Cornelio [1 ]
Adolfo Alonso, Gustavo [2 ]
机构
[1] Inst Politecn Nacl, Ctr Invest Computac, Av Juan de Dios Batiz, Ciudad De Mexico 07738, Mexico
[2] Univ Autonoma Guerrero, Fac Ingn, Av Lazaro Cardenas S-N,Ciudad Univ Zona Sur, Chilpancingo Guerrero 39087, Mexico
[3] Inst Politecn Nacl, Ctr Innovac & Desarrollo Tecnol Computo, Av Juan de Dios Batiz, Ciudad De Mexico 07700, Mexico
关键词
Computational genomics; microarray data analysis; feature selection; feature ranking; feature weighting; k-nearest neighbors; NEAREST-NEIGHBOR; HARMONY SEARCH; CANCER; FEATURES; RANKING; KNN;
D O I
10.3233/IDA-173720
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature selection is a common solution to microarray analysis. Previous approaches either select features based on classical statistical tests that can be tuned up with a classifier, or using regularization penalties incorporated in the cost function. Here we propose to use a feature ranking and weighting scheme instead, which combines statistical techniques with a weighted k-NN classifier using a modified forward selection procedure. We demonstrate that classification accuracy of our proposal outperforms existing methods on a range of public microarray gene expression datasets. The proposed method is also compared to state-of-the-art feature selection algorithms by means of the Friedman test. Although a bunch of feature selection techniques has been used for genomic data, the experimental results show the classification superiority of our method on most of the present gene expression datasets.
引用
收藏
页码:241 / 253
页数:13
相关论文
共 50 条
  • [31] The Fast k-NN Algorithm Based on a Fixed Grid Method
    Jan, Gene Eu
    Su, Kuan-Lin
    Hsieh, Hui-Ching
    Luo, Chaomin
    2022 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, ROBOTICS AND CONTROL, AIRC, 2022, : 82 - 86
  • [32] A NEW INFORMATION THEORETIC CLUSTERING ALGORITHM USING K-NN
    Vikjord, Vidar
    Jenssen, Robert
    2013 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2013,
  • [33] HYBRIDIZATION OF GENETIC AND QUANTUM ALGORITHM FOR GENE SELECTION AND CLASSIFICATION OF MICROARRAY DATA
    Abderrahim, Allani
    Talbi, El-Ghazali
    Khaled, Mellouli
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2012, 23 (02) : 431 - 444
  • [34] 'Right to Be Forgotten': Analyzing the Impact of Forgetting Data Using K-NN Algorithm in Data Stream Learning
    Libera, Caio
    Miranda, Leandro
    Bernardini, Flavia
    Mastelini, Saulo
    Viterbo, Jose
    ELECTRONIC GOVERNMENT, EGOV 2022, 2022, 13391 : 530 - 542
  • [35] Gene Selection for Microarray Data Classification Using Hybrid Meta-Heuristics
    Dif, Nassima
    Attaoui, Mohamed Walid
    Elberrichi, Zakaria
    MODELLING AND IMPLEMENTATION OF COMPLEX SYSTEMS, 2019, 64 : 119 - 132
  • [36] Gene selection and classification of microarray data method based on mutual information and moth flame algorithm
    Dabba, Ali
    Tari, Abdelkamel
    Meftali, Samy
    Mokhtari, Rabah
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 166
  • [37] FEATURE SELECTION BY WEIGHTED-SNR FOR CANCER MICROARRAY DATA CLASSIFICATION
    Hengpraprohm, Supoj
    Chongstitvatana, Prabhas
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2009, 5 (12A): : 4627 - 4635
  • [38] Fast k-NN classification using the cluster-space approach
    Jia, XP
    Richards, JA
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2005, 2 (02) : 225 - 228
  • [39] Privacy-Preserving K-NN Classification Using Vector Operations
    Jalla, Hanumantharao
    Girija, P. N.
    INFORMATION AND COMMUNICATION TECHNOLOGY FOR COMPETITIVE STRATEGIES, 2019, 40 : 655 - 664
  • [40] Solving the Structure-Property Problem Using k-NN Classification
    Perevoznikov, Aleksandr
    Shestov, Alexey
    Permiakov, Evgenii
    Kumskov, Mikhail
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, 2011, 6744 : 49 - 53