Mitochondrial Genome Variants as a Cause of Mitochondrial Cardiomyopathy

被引:9
作者
Campbell, Teresa [1 ]
Slone, Jesse [1 ]
Huang, Taosheng [1 ]
机构
[1] Univ Buffalo, Jacobs Sch Med & Biomed Sci, Dept Pediat, Buffalo, NY 14203 USA
关键词
mtDNA; mitochondrial genome; mitochondrial cardiomyopathy; hypertrophic cardiomyopathy; dilated cardiomyopathy; reactive oxygen species; calcium; iron overload; ferroptosis; KEARNS-SAYRE SYNDROME; PARKINSON-WHITE-SYNDROME; LEIGH-SYNDROME; HISTIOCYTOID CARDIOMYOPATHY; HYPERTROPHIC CARDIOMYOPATHY; OXIDATIVE-PHOSPHORYLATION; PERMEABILITY TRANSITION; CARDIAC MANIFESTATIONS; ESSENTIAL COMPONENT; CALCIUM-CHANNELS;
D O I
10.3390/cells11182835
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Mitochondria are small double-membraned organelles responsible for the generation of energy used in the body in the form of ATP. Mitochondria are unique in that they contain their own circular mitochondrial genome termed mtDNA. mtDNA codes for 37 genes, and together with the nuclear genome (nDNA), dictate mitochondrial structure and function. Not surprisingly, pathogenic variants in the mtDNA or nDNA can result in mitochondrial disease. Mitochondrial disease primarily impacts tissues with high energy demands, including the heart. Mitochondrial cardiomyopathy is characterized by the abnormal structure or function of the myocardium secondary to genetic defects in either the nDNA or mtDNA. Mitochondrial cardiomyopathy can be isolated or part of a syndromic mitochondrial disease. Common manifestations of mitochondrial cardiomyopathy are a phenocopy of hypertrophic cardiomyopathy, dilated cardiomyopathy, and cardiac conduction defects. The underlying pathophysiology of mitochondrial cardiomyopathy is complex and likely involves multiple abnormal processes in the cell, stemming from deficient oxidative phosphorylation and ATP depletion. Possible pathophysiology includes the activation of alternative metabolic pathways, the accumulation of reactive oxygen species, dysfunctional mitochondrial dynamics, abnormal calcium homeostasis, and mitochondrial iron overload. Here, we highlight the clinical assessment of mtDNA-related mitochondrial cardiomyopathy and offer a novel hypothesis of a possible integrated, multivariable pathophysiology of disease.
引用
收藏
页数:27
相关论文
共 161 条
  • [1] Local Regulation of Arterial L-Type Calcium Channels by Reactive Oxygen Species
    Amberg, Gregory C.
    Earley, Scott
    Glapa, Stephanie A.
    [J]. CIRCULATION RESEARCH, 2010, 107 (08) : 1002 - U123
  • [2] [Anonymous], ONLINE MENDELIAN INH
  • [3] Association of Mitochondrial DNA Copy Number With Cardiovascular Disease
    Ashar, Foram N.
    Zhang, Yiyi
    Longchamps, Ryan J.
    Lane, John
    Moes, Anna
    Grove, Megan L.
    Mychaleckyj, Josyf C.
    Taylor, Kent D.
    Coresh, Josef
    Rotter, Jerome I.
    Boerwinkle, Eric
    Pankratz, Nathan
    Guallar, Eliseo
    Arking, Dan E.
    [J]. JAMA CARDIOLOGY, 2017, 2 (11) : 1247 - 1255
  • [4] ULTRASTRUCTURAL QUANTITATION OF MITOCHONDRIA AND MYOFILAMENTS IN CARDIAC-MUSCLE FROM 10 DIFFERENT ANIMAL SPECIES INCLUDING MAN
    BARTH, E
    STAMMLER, G
    SPEISER, B
    SCHAPER, J
    [J]. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 1992, 24 (07) : 669 - 681
  • [5] Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter
    Baughman, Joshua M.
    Perocchi, Fabiana
    Girgis, Hany S.
    Plovanich, Molly
    Belcher-Timme, Casey A.
    Sancak, Yasemin
    Bao, X. Robert
    Strittmatter, Laura
    Goldberger, Olga
    Bogorad, Roman L.
    Koteliansky, Victor
    Mootha, Vamsi K.
    [J]. NATURE, 2011, 476 (7360) : 341 - U111
  • [6] Recurrent heteroplasmy for the MT-ATP6 p.Ser148Asn (m.8969G>A) mutation in patients with syndromic congenital sideroblastic anemia of variable clinical severity
    Berhe, Simon
    Heeney, Matthew M.
    Campagna, Dean R.
    Thompson, John F.
    White, Eric J.
    Ross, Tristen
    Peake, Roy W. A.
    Hanrahan, Jeffery D.
    Rodriguez, Vilmarie
    Renaud, Deborah L.
    Patnaik, Mrinal S.
    Chang, Eugenia
    Bottomley, Sylvia S.
    Fleming, Mark D.
    [J]. HAEMATOLOGICA, 2018, 103 (12) : E561 - E563
  • [7] Molecular mechanisms and consequences of mitochondrial permeability transition
    Bonora, Massimo
    Giorgi, Carlotta
    Pinton, Paolo
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2022, 23 (04) : 266 - 285
  • [8] Current Diagnostic and Treatment Strategies for Specific Dilated Cardiomyopathies: A Scientific Statement From the American Heart Association
    Bozkurt, Biykem
    Colvin, Monica
    Cook, Jennifer
    Cooper, Leslie T.
    Deswal, Anita
    Fonarow, Gregg C.
    Francis, Gary S.
    Lenihan, Daniel
    Lewis, Eldrin F.
    McNamara, Dennis M.
    Pahl, Elfriede
    Vasan, Ramachandran S.
    Ramasubbu, Kumudha
    Rasmusson, Kismet
    Towbin, Jeffrey A.
    Yancy, Clyde
    [J]. CIRCULATION, 2016, 134 (23) : E579 - E646
  • [9] Coordinated behavior of mitochondria in both space and time: A reactive oxygen species-activated wave of mitochondrial depolarization
    Brady, NR
    Elmore, SP
    van Beek, JJHGM
    Krab, K
    Courtoy, PJ
    Hue, L
    Westerhoff, HV
    [J]. BIOPHYSICAL JOURNAL, 2004, 87 (03) : 2022 - 2034
  • [10] Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress
    Bravo, Roberto
    Miguel Vicencio, Jose
    Parra, Valentina
    Troncoso, Rodrigo
    Pablo Munoz, Juan
    Bui, Michael
    Quiroga, Clara
    Rodriguez, Andrea E.
    Verdejo, Hugo E.
    Ferreira, Jorge
    Iglewski, Myriam
    Chiong, Mario
    Simmen, Thomas
    Zorzano, Antonio
    Hill, Joseph A.
    Rothermel, Beverly A.
    Szabadkai, Gyorgy
    Lavandero, Sergio
    [J]. JOURNAL OF CELL SCIENCE, 2011, 124 (13) : 2143 - 2152