Towards Patient-Specific Optimization of Neoadjuvant Treatment Protocols for Breast Cancer Based on Image-Guided Fluid Dynamics

被引:8
|
作者
Wu, Chengyue [1 ]
Hormuth, David A. [1 ,2 ]
Lorenzo, Guillermo [1 ,3 ]
Jarrett, Angela M. [1 ,2 ]
Pineda, Federico [4 ]
Howard, Frederick M. [5 ]
Karczmar, Gregory S. [4 ]
Yankeelov, Thomas E. [2 ,6 ,7 ]
机构
[1] Univ Texas Austin, Oden Inst Computat Engn & Sci, Austin, TX 78712 USA
[2] Univ Texas Austin, Livestrong Canc Inst, Austin, TX 78712 USA
[3] Univ Pavia, Dept Civil Engn & Architecture, Pavia, Italy
[4] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA
[5] Univ Chicago, Dept Med, Sect Hematol Oncol, 5841 S Maryland Ave, Chicago, IL 60637 USA
[6] Univ Texas Austin, Dept Biomed Engn, Oden Inst Computat Engn & Sci, Dept Oncol,Dept Diagnost Med, Austin, TX USA
[7] MD Anderson Canc Ctr, Dept Imaging Phys, Houston, TX USA
基金
欧盟地平线“2020”;
关键词
Drugs; Protocols; Toxicology; Magnetic resonance imaging; Computational modeling; Clinical trials; Breast cancer; Drug delivery; magnetic resonance imaging; mathematical oncology; optimal control problem; data-driven; clinical-computational framework; DOSE-DENSE CHEMOTHERAPY; ADJUVANT TREATMENT; OPEN-LABEL; DOXORUBICIN; THERAPY; TRASTUZUMAB; INTENSITY; WOMEN; TRIAL; METAANALYSIS;
D O I
10.1109/TBME.2022.3168402
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: This study establishes a fluid dynamics model personalized with patient-specific imaging data to optimize neoadjuvant therapy (i.e., doxorubicin) protocols for breast cancers. Methods: Ten patients recruited at the University of Chicago were included in this study. Quantitative dynamic contrast-enhanced and diffusion weighted magnetic resonance imaging data are leveraged to estimate patient-specific hemodynamic properties, which are then used to constrain the mechanism-based drug delivery model. Then, computer simulations of this model yield the subsequent drug distribution throughout the breast. By systematically varying the dosing schedule, we identify an optimized regimen for each patient using the maximum safe therapeutic duration (MSTD), which is a metric balancing treatment efficacy and toxicity. Results: With an individually optimized dose (range = 12.11-15.11 mg/m(2) per injection), a 3-week regimen consisting of a uniform daily injection significantly outperforms all other scheduling strategies (P < 0.001). In particular, the optimal protocol is predicted to significantly outperform the standard protocol (P < 0.001), improving the MSTD by an average factor of 9.93 (range = 6.63 to 14.17). Conclusion: A clinical-mathematical framework was developed by integrating quantitative MRI data, advanced image processing, and computational fluid dynamics to predict the efficacy and toxicity of neoadjuvant therapy protocols, thus enabling the rational identification of an optimal therapeutic regimen on a patient-specific basis. Significance: Our clinical-computational approach has the potential to enable optimization of therapeutic regimens on a patient-specific basis and provide guidance for prospective clinical trials aimed at refining neoadjuvant therapy protocols for breast cancers.
引用
收藏
页码:3334 / 3344
页数:11
相关论文
共 50 条
  • [21] Patient-specific Deformation Modelling via Elastography: Application to Image-guided Prostate Interventions
    Wang, Yi
    Ni, Dong
    Qin, Jing
    Xu, Ming
    Xie, Xiaoyan
    Heng, Pheng-Ann
    SCIENTIFIC REPORTS, 2016, 6
  • [22] Patient-specific Deformation Modelling via Elastography: Application to Image-guided Prostate Interventions
    Yi Wang
    Dong Ni
    Jing Qin
    Ming Xu
    Xiaoyan Xie
    Pheng-Ann Heng
    Scientific Reports, 6
  • [23] Patient-specific neoadjuvant regimens for breast cancer identified via image-driven mathematical modeling
    Jarrett, Angela M.
    Lima, Ernesto A.
    Hormuth, David A.
    Wu, Chengyue
    Virostko, John
    Sorace, Anna G.
    DiCarlo, Julie C.
    Patt, Debra
    Goodgame, Boone
    Avery, Sarah
    Yankeelov, Thomas E.
    CANCER RESEARCH, 2020, 80 (16)
  • [24] Response to "Image-Guided Distal Radius Osteotomy Using Patient-Specific Instrument Guides"
    Kunz, Manuela
    Ma, Burton
    Rudan, John F.
    Ellis, Randy E.
    Pichora, David R.
    JOURNAL OF HAND SURGERY-AMERICAN VOLUME, 2014, 39 (01): : 174 - 175
  • [25] Explainability and controllability of patient-specific deep learning with attention-based augmentation for markerless image-guided radiotherapy
    Terunuma, Toshiyuki
    Sakae, Takeji
    Hu, Yachao
    Takei, Hideyuki
    Moriya, Shunsuke
    Okumura, Toshiyuki
    Sakurai, Hideyuki
    MEDICAL PHYSICS, 2023, 50 (01) : 480 - 494
  • [26] Patient-Specific Image-Based Computational Fluid Dynamics Analysis of Abdominal Aorta and Branches
    Totorean, Alin-Florin
    Totorean, Iuliana-Claudia
    Bernad, Sandor Ianos
    Ciocan, Tiberiu
    Malita, Daniel Claudiu
    Gaita, Dan
    Bernad, Elena Silvia
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (09):
  • [27] Image-guided radiotherapy contribution and patient setup for anorectal cancer treatment
    Masson, I.
    Delpon, G.
    Vendrely, V.
    CANCER RADIOTHERAPIE, 2018, 22 (6-7): : 622 - 630
  • [28] Forecasting treatment response to neoadjuvant therapy in triple-negative breast cancer via an image-guided digital twin
    Wu, Chengyue
    Jarrett, Angela M.
    Zhou, Zijian
    Elshafeey, Nabil
    Adrada, Beatriz E.
    Candelaria, Rosalind P.
    Mohamed, Rania
    Boge, Medine
    Huo, Lei
    White, Jason
    Tripathy, Debu
    Valero, Vicente
    Litton, Jennifer
    Yam, Clinton
    Son, Jong Bum
    Ma, Jingfei
    Rauch, Gaiane M.
    Yankeelov, Thomas E.
    CANCER RESEARCH, 2022, 82 (12)
  • [29] Treatment Planning for Image-Guided Neuro-Vascular Interventions Using Patient-Specific 3D Printed Phantoms
    Russ, M.
    O'Hara, R.
    Nagesh, S. V. Setlur
    Mokin, M.
    Jimenez, C.
    Siddiqui, A.
    Bednarek, D.
    Rudin, S.
    Ionita, C.
    MEDICAL IMAGING 2015: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2015, 9417
  • [30] Accuracy of Post-Neoadjuvant Chemotherapy Image-Guided Breast Biopsy to Predict Residual Cancer
    Tasoulis, Marios Konstantinos
    Lee, Han-Byoel
    Yang, Wei
    Pope, Romney
    Krishnamurthy, Savitri
    Kim, Soo-Yeon
    Cho, Nariya
    Teoh, Victoria
    Rauch, Gaiane M.
    Smith, Benjamin D.
    Valero, Vicente
    Mohammed, Kabir
    Han, Wonshik
    MacNeill, Fiona
    Kuerer, Henry M.
    JAMA SURGERY, 2020, 155 (12)