Uncovering the Molecular Secrets of Inflammatory Breast Cancer Biology: An Integrated Analysis of Three Distinct Affymetrix Gene Expression Datasets

被引:113
作者
Van Laere, Steven J. [1 ]
Ueno, Naoto T. [2 ,3 ]
Finetti, Pascal
Vermeulen, Peter [1 ]
Lucci, Anthony [3 ]
Robertson, Fredika M. [4 ]
Marsan, Melike [1 ,2 ]
Iwamoto, Takayuki [3 ]
Krishnamurthy, Savitri [3 ]
Masuda, Hiroko [3 ]
van Dam, Peter [1 ]
Woodward, Wendy A. [3 ]
Viens, Patrice [5 ]
Cristofanilli, Massimo [6 ]
Birnbaum, Daniel [5 ]
Dirix, Luc [1 ]
Reuben, James M. [3 ]
Bertucci, Francois [5 ]
机构
[1] Gen Hosp Sint Augustinus, Ctr Oncol, Translat Canc Res Unit, Antwerp, Belgium
[2] Katholieke Univ Leuven, Dept Oncol, Louvain, Belgium
[3] Univ Texas MD Anderson Canc Ctr, Morgan Welch Inflammatory Breast Canc Program & C, Houston, TX 77030 USA
[4] Univ Texas MD Anderson Canc Ctr, Dept Expt Therapeut, Houston, TX 77030 USA
[5] INSERM, Ctr Rech Cancerol Marseille, IPC, Dept Mol Oncol,UMR891, F-13258 Marseille, France
[6] Fox Chase Canc Ctr, Dept Med Oncol, G Morris Dorrance Jr Endowed Chair Med Oncol, Philadelphia, PA 19111 USA
关键词
BETA SIGNALING SWITCHES; TGF-BETA; IDENTIFICATION; SIGNATURE; SUBTYPES;
D O I
10.1158/1078-0432.CCR-12-2549
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Inflammatory breast cancer (IBC) is a poorly characterized form of breast cancer. So far, the results of expression profiling in IBC are inconclusive due to various reasons including limited sample size. Here, we present the integration of three Affymetrix expression datasets collected through the World IBC Consortium allowing us to interrogate the molecular profile of IBC using the largest series of IBC samples ever reported. Experimental Design: Affymetrix profiles (HGU133-series) from 137 patients with IBC and 252 patients with non-IBC (nIBC) were analyzed using unsupervised and supervised techniques. Samples were classified according to the molecular subtypes using the PAM50-algorithm. Regression models were used to delineate IBC-specific and molecular subtype-independent changes in gene expression, pathway, and transcription factor activation. Results: Four robust IBC-sample clusters were identified, associated with the different molecular subtypes (P < 0.001), all of which were identified in IBC with a similar prevalence as in nIBC, except for the luminal A subtype (19% vs. 42%; P < 0.001) and the HER2-enriched subtype (22% vs. 9%; P < 0.001). Supervised analysis identified and validated an IBC-specific, molecular subtype-independent 79-gene signature, which held independent prognostic value in a series of 871 nIBCs. Functional analysis revealed attenuated TGF-beta signaling in IBC. Conclusion: We show that IBC is transcriptionally heterogeneous and that all molecular subtypes described in nIBC are detectable in IBC, albeit with a different frequency. The molecular profile of IBC, bearing molecular traits of aggressive breast tumor biology, shows attenuation of TGF-beta signaling, potentially explaining the metastatic potential of IBC tumor cells in an unexpected manner. (C)2013 AACR.
引用
收藏
页码:4685 / 4696
页数:12
相关论文
共 37 条
[1]   High-Resolution Comparative Genomic Hybridization of Inflammatory Breast Cancer and Identification of Candidate Genes [J].
Bekhouche, Ismahane ;
Finetti, Pascal ;
Adelaide, Jose ;
Ferrari, Anthony ;
Tarpin, Carole ;
Charafe-Jauffret, Emmanuelle ;
Charpin, Colette ;
Houvenaeghel, Gilles ;
Jacquemier, Jocelyne ;
Bidaut, Ghislain ;
Birnbaum, Daniel ;
Viens, Patrice ;
Chaffanet, Max ;
Bertucci, Francois .
PLOS ONE, 2011, 6 (02)
[2]   Adjustment of systematic microarray data biases [J].
Benito, M ;
Parker, J ;
Du, Q ;
Wu, JY ;
Xang, D ;
Perou, CM ;
Marron, JS .
BIOINFORMATICS, 2004, 20 (01) :105-114
[3]   Gene expression profiling identifies molecular subtypes of inflammatory breast cancer [J].
Bertucci, F ;
Finetti, P ;
Rougemont, J ;
Charafe-Jauffret, E ;
Cervera, N ;
Tarpin, C ;
Nguyen, C ;
Xerri, L ;
Houlgatte, M ;
Jacquemier, J ;
Viens, P ;
Birnbaum, D .
CANCER RESEARCH, 2005, 65 (06) :2170-2178
[4]   Gene expression profiling for molecular characterization of inflammatory breast cancer and prediction of response to chemotherapy [J].
Bertucci, F ;
Finetti, P ;
Rougemont, J ;
Charafe-Jauffret, E ;
Nasser, V ;
Loriod, W ;
Camerlo, J ;
Tagett, R ;
Tarpin, C ;
Houvenaeghel, G ;
Nguyen, C ;
Maraninchi, D ;
Jacquemier, J ;
Houlgatte, R ;
Birnbaum, D ;
Viens, P .
CANCER RESEARCH, 2004, 64 (23) :8558-8565
[5]   Gene Expression Profiling of Inflammatory Breast Cancer [J].
Bertucci, Francois ;
Finetti, Pascal ;
Birnbaum, Daniel ;
Viens, Patrice .
CANCER, 2010, 116 (11) :2783-2793
[6]   Molecular profiling of inflammatory breast cancer:: Identification of a poor-prognosis gene expression signature [J].
Bièche, I ;
Lerebours, F ;
Tozlu, S ;
Espie, M ;
Marty, M ;
Lidereau, R .
CLINICAL CANCER RESEARCH, 2004, 10 (20) :6789-6795
[7]   A stromal gene signature associated with inflammatory breast cancer [J].
Boersma, Brenda J. ;
Reimers, Mark ;
Yi, Ming ;
Ludwig, Joseph A. ;
Luke, Brain T. ;
Stephens, Robert M. ;
Yfantis, Harry G. ;
Lee, Dong H. ;
Weinstein, John N. ;
Ambs, Stefan .
INTERNATIONAL JOURNAL OF CANCER, 2008, 122 (06) :1324-1332
[8]   Immunophenotypic analysis of inflammatory breast cancers: identification of an 'inflammatory signature' [J].
Charafe-Jaufrret, E ;
Tarpin, C ;
Bardou, VJ ;
Bertucci, FO ;
Ginestier, C ;
Braud, AC ;
Puig, B ;
Geneix, J ;
Hassoun, J ;
Birnbaum, D ;
Jacquemier, J ;
Viens, P .
JOURNAL OF PATHOLOGY, 2004, 202 (03) :265-273
[9]   PhosphoMARCKS drives motility of mouse melanoma cells [J].
Chen, Xiangyu ;
Rotenberg, Susan A. .
CELLULAR SIGNALLING, 2010, 22 (07) :1097-1103
[10]   The properties of high-dimensional data spaces: implications for exploring gene and protein expression data [J].
Clarke, Robert ;
Ressom, Habtom W. ;
Wang, Antai ;
Xuan, Jianhua ;
Liu, Minetta C. ;
Gehan, Edmund A. ;
Wang, Yue .
NATURE REVIEWS CANCER, 2008, 8 (01) :37-49