EXACT NUMBER OF SOLUTIONS FOR A NEUMANN PROBLEM INVOLVING THE p-LAPLACIAN

被引:0
作者
Sanchez, Justino [1 ]
Vergara, Vicente [2 ]
机构
[1] Univ La Serena, Dept Matemat, La Serena, Chile
[2] Univ Tarapaca, Inst Alta Invest, Arica, Chile
关键词
Neumann boundary value problem; p-Laplacian; lower-upper solutions; exact multiplicity; POSITIVE SOLUTIONS; EXISTENCE; EQUATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the exact number of solutions of the quasilinear Neumann boundary-value problem (phi(p)(u'(t)))' + g(u(t)) = h(t) in (a, b), u'(a) = u'(b) = 0, where phi(p)(s) = vertical bar s vertical bar(p-2)s denotes the one-dimensional p-Laplacian. Under appropriate hypotheses on g and h, we obtain existence, multiplicity, exactness and non existence results. The existence of solutions is proved using the method of upper and lower solutions.
引用
收藏
页数:10
相关论文
共 17 条
[1]  
[Anonymous], 1985, RES NOTES MATH
[2]   Optimal existence conditions for φ-Laplacian equations with upper and lower solutions in the reversed order [J].
Cabada, A ;
Habets, P ;
Pouso, RL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 166 (02) :385-401
[3]   Existence results for nonlinear problems with separated boundary conditions [J].
Cabada, A ;
Lois, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 35 (04) :449-456
[4]   Existence result for the problem (φ(u′))′=f(t,u,u′) with periodic and Neumann boundary conditions. [J].
Cabada, A ;
Pouso, RL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (03) :1733-1742
[5]  
Cabada A., 2011, BOUNDARY VALUE PROBL, V2011
[6]  
De Coster C, 2001, PROG NONLIN, V43, P3
[7]  
De Coster C., 2004, Handbook of differential equations, P69
[8]   ON THE EQUATION OF TURBULENT FILTRATION IN ONE-DIMENSIONAL POROUS-MEDIA [J].
ESTEBAN, JR ;
VAZQUEZ, JL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (11) :1303-1325
[9]   Sobolev Inequality and the Exact Multiplicity of Solutions and Positive Solutions to a Second-Order Neumann Boundary Value Problem [J].
Feng, Yuqiang .
ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (02) :895-905
[10]   The monotone method for Neumann functional differential equations with upper and lower solutions in the reverse order [J].
Jiang, Daqing ;
Yang, Ying ;
Chu, Jifeng ;
O'Regan, Donal .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (10) :2815-2828