Van der Waals binding energies in graphitic structures

被引:206
|
作者
Girifalco, LA [1 ]
Hodak, M [1 ]
机构
[1] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
关键词
D O I
10.1103/PhysRevB.65.125404
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two types of methods are commonly used to describe the van der Waals cohesive properties of graphitic systems: one is based on density functional theory and the other on empirical model potentials. This paper examines the relation between the two and finds that, when properly done, both methods give the same results. The local density approximation (LDA) method can describe cohesion when graphitic molecules are close together, but must be supplemented with the theory of dispersion forces when the intermolecular distance increases. It is found that LDA dispersion force calculations reproduce the empirical potentials, which are thereby validated by fundamental theory. A recent disparity between two types of calculations in determining binding energy of C-60 molecules inside a (10,10) nanotube is also examined.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [1] Binding energies of van der Waals complexes at non-equilibrium geometries
    Arabi, Alya A.
    CHEMICAL PHYSICS, 2020, 529
  • [2] Van der Waals interactions between graphitic nanowiggles
    Phan, Anh D.
    Woods, Lilia M.
    The-Long Phan
    JOURNAL OF APPLIED PHYSICS, 2013, 114 (04)
  • [3] CALCULATION OF LONDON-VAN DER WAALS ENERGIES
    MUSHER, JI
    JOURNAL OF CHEMICAL PHYSICS, 1963, 39 (10): : 2409 - &
  • [5] Periodic structures in a van der Waals fluid
    Fife, PC
    Wang, XP
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 : 235 - 250
  • [6] The Dielectric Impact of Layer Distances on Exciton and Trion Binding Energies in van der Waals Heterostructures
    Florian, Matthias
    Hartmann, Malte
    Steinhoff, Alexander
    Klein, Julian
    Holleitner, Alexander W.
    Finley, Jonathan J.
    Wehling, Tim O.
    Kaniber, Michael
    Gies, Christopher
    NANO LETTERS, 2018, 18 (04) : 2725 - 2732
  • [7] Computing van der Waals energies in the context of the rotamer approximation
    Grigoryan, Gevorg
    Ochoa, Alejandro
    Keating, Amy E.
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2007, 68 (04) : 863 - 878
  • [8] Experimental determination of van der Waals energies in a biological system
    Wear, Martin A.
    Kan, Daphne
    Rabu, Amir
    Walkinshaw, Malcolm D.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (34) : 6453 - 6456
  • [9] Fluorocarbons: Surface free energies and van der Waals interaction
    Drummond, CJ
    Georgaklis, G
    Chan, DYC
    LANGMUIR, 1996, 12 (11) : 2617 - 2621
  • [10] Van der Waals interlayer potential of graphitic structures:From Lennard–Jones to Kolmogorov–Crespy and Lebedeva models
    Zbigniew Kozio?
    Grzegorz Gawlik
    Jacek Jagielski
    Chinese Physics B, 2019, (09) : 305 - 312