Robust derivative-free Kalman filter based on Huber's M-estimation methodology

被引:74
作者
Chang, Lubin [1 ]
Hu, Baiqing [1 ]
Chang, Guobin [1 ,2 ]
Li, An [1 ]
机构
[1] Naval Univ Engn, Dept Nav Engn, Wuhan, Peoples R China
[2] Tianjin Inst Hydrog Surveying & Charting, Tianjin 300000, Peoples R China
基金
中国国家自然科学基金;
关键词
Huber's M-estimation; Nonlinear filtering; Robust regression; Unscented Kalman filter; NONLINEAR TRANSFORMATION; MODEL; COVARIANCES;
D O I
10.1016/j.jprocont.2013.05.004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, a discrete-time robust nonlinear filtering algorithm is proposed to deal with the contaminated Gaussian noise in the measurement, which is based on a robust modification of the derivative-free Kalman filter. By interpreting the Kalman type filter (KTF) as the recursive Bayesian approximation, the innovation is reformulated capitalizing on the Huber's M-estimation methodology. The proposed algorithm achieves not only the robustness of the M-estimation but also the accuracy and flexibility of the derivative-free Kalman filter for the nonlinear problems. The reliability and accuracy of the proposed algorithm are tested in the Univariate Nonstationary Growth Model. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1555 / 1561
页数:7
相关论文
共 27 条
[1]  
[Anonymous], 2009, Wiley Series in Probability and Statistics, DOI DOI 10.1002/9780470434697.CH7
[2]   An l1-Laplace Robust Kalman Smoother [J].
Aravkin, Aleksandr Y. ;
Bell, Bradley M. ;
Burke, James V. ;
Pillonetto, Gianluigi .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (12) :2892-2905
[3]   A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].
Arulampalam, MS ;
Maskell, S ;
Gordon, N ;
Clapp, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :174-188
[4]  
Bar-Shalom Y., 2004, Estimation with applications to tracking and navigation: Theory algorithms and software
[5]   A New Transform-Domain Regularized Recursive Least M-Estimate Algorithm for a Robust Linear Estimation [J].
Chan, S. C. ;
Zhang, Z. G. ;
Chu, Y. J. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2011, 58 (02) :120-124
[6]   Marginalised iterated unscented Kalman filter [J].
Chang, L. ;
Hu, B. ;
Chang, G. ;
Li, A. .
IET CONTROL THEORY AND APPLICATIONS, 2012, 6 (06) :847-854
[7]   Transformed Unscented Kalman Filter [J].
Chang, Lubin ;
Hu, Baiqing ;
Li, An ;
Qin, Fangjun .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (01) :252-257
[8]   Robust estimation with unknown noise statistics [J].
Durovic, ZM ;
Kovacevic, BD .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (06) :1292-1296
[9]   Robust Kalman Filter Based on a Generalized Maximum-Likelihood-Type Estimator [J].
Gandhi, Mital A. ;
Mili, Lamine .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (05) :2509-2520
[10]   H∞ Filtering for Discrete-Time State-Delayed Systems With Finite Frequency Specifications [J].
Gao, Huijun ;
Li, Xianwei .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (12) :2932-2939