Adaptive Neural Network Tracking Control of MIMO Nonlinear Systems With Unknown Dead Zones and Control Directions

被引:249
作者
Zhang, Tianping [1 ]
Ge, Shuzhi Sam [2 ]
机构
[1] Yangzhou Univ, Coll Informat Engn, Dept Automat, Yangzhou 225009, Peoples R China
[2] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2009年 / 20卷 / 03期
基金
中国国家自然科学基金;
关键词
Adaptive control; dead zone; neural network (NN) control; Nussbaum function; sliding mode control; DELAY SYSTEMS; DESIGN; INPUT;
D O I
10.1109/TNN.2008.2010349
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, adaptive neural network (NN) tracking control is investigated for a class of uncertain multiple-input-multiple-output (MIMO) nonlinear systems in triangular control structure with unknown nonsymmetric dead zones and control directions. The design is based on the principle of sliding mode control and the use of Nussbaum-type functions in solving the problem of the. completely unknown control directions. It is shown that the dead-zone output can be represented as. a simple linear system with a static time-varying gain and bounded disturbance by introducing characteristic function. By utilizing the integral-type Lyapunov function and introducing an adaptive compensation term for the upper bound of the optimal approximation error and the dead-zone disturbance, the closed-loop control system is proved to be semiglobally uniformly ultimately bounded, with tracking errors converging to zero under the condition that the slopes of unknown dead zones are equal. Simulation results demonstrate the effectiveness of the approach.
引用
收藏
页码:483 / 497
页数:15
相关论文
共 30 条
[1]  
Cho HY, 1998, INT J ADAPT CONTROL, V12, P451, DOI 10.1002/(SICI)1099-1115(199808)12:5<451::AID-ACS504>3.0.CO
[2]  
2-R
[3]   Stable adaptive control for nonlinear multivariable systems with a triangular control structure [J].
Ge, SS ;
Hang, CC ;
Zhang, T .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (06) :1221-1225
[4]   Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients [J].
Ge, SZS ;
Hong, F ;
Lee, TH .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (01) :499-516
[5]   Multilayer neural-net robot controller with guaranteed tracking performance [J].
Lewis, FL ;
Yesildirek, A ;
Liu, K .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1996, 7 (02) :388-399
[6]   SOME REMARKS ON A CONJECTURE IN PARAMETER ADAPTIVE-CONTROL [J].
NUSSBAUM, RD .
SYSTEMS & CONTROL LETTERS, 1983, 3 (05) :243-246
[7]   A UNIVERSAL ADAPTIVE STABILIZER FOR A CLASS OF NONLINEAR-SYSTEMS [J].
RYAN, EP .
SYSTEMS & CONTROL LETTERS, 1991, 16 (03) :209-218
[8]   A NONLINEAR UNIVERSAL SERVOMECHANISM [J].
RYAN, EP .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (04) :753-761
[9]   GAUSSIAN NETWORKS FOR DIRECT ADAPTIVE-CONTROL [J].
SANNER, RM ;
SLOTINE, JJE .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1992, 3 (06) :837-863
[10]   Deadzone compensation in motion control systems using neural networks [J].
Selmic, RR ;
Lewis, FL .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (04) :602-613