Dispersion of ZrO2 nanoparticles in polyacrylonitrile: Preparation of thermally-resistant electrically-conductive oxygen barrier nanocomposites

被引:12
作者
Prusty, Gyanaranjan [1 ]
Swain, Sarat K. [1 ]
机构
[1] Veer Surendra Sai Univ Technol, Dept Chem, Burla 768018, Sambalpur, India
关键词
Nanocomposites; Dispersion; Gas barrier; Emulsion; Electrical conductivity; GAS BARRIER; COMPOSITE; FILMS; PERMEATION; PROPERTY; BEHAVIOR; OXIDE;
D O I
10.1016/j.mssp.2013.07.033
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Polyacrylonitrile/zirconium dioxide (PAN/ZrO2) nanocomposites were synthesized by dispersion of ZrO2 nanoparticles through the in situ emulsifier-free emulsion polymerization technique. The thermal stability of PAN/ZrO2 nanocomposites was enhanced with increasing concentrations of ZrO2 which may be due to dispersion of nanoparticles in PAN matrix. The electrical conductivity of nanocomposites gradually increased with increase in the ZrO2 loading. The gas barrier property of PAN/ZrO2 nanocomposites was determined by using gas permeameter and it was found that, the gas barrier property was reduced to about 10 times with increase of ZrO2 proportions. This is because ZrO2 nanoparticles in PAN/ZrO2 nanocomposites created a tortuous path for preventing oxygen permeation. The electrical conductive PAN/ZrO2 nanocomposites may be used in semiconductor devices and packaging materials. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2039 / 2043
页数:5
相关论文
共 30 条
[1]   Structure-property relationships in cross-linked polyester-clay nanocomposites [J].
Bharadwaj, RK ;
Mehrabi, AR ;
Hamilton, C ;
Trujillo, C ;
Murga, M ;
Fan, R ;
Chavira, A ;
Thompson, AK .
POLYMER, 2002, 43 (13) :3699-3705
[2]   Processing and characterization of ultra-thin yttria-stabilized zirconia (YSZ) electrolytic films for SOFC [J].
Chen, YY ;
Wei, WCJ .
SOLID STATE IONICS, 2006, 177 (3-4) :351-357
[3]   Investigation on switching behavior of ZrO2 thin film for memory device applications [J].
Choi, Kyung-Hyun ;
Duraisamy, Navaneethan ;
Awais, Muhammad Naeem ;
Muhammad, Nauman Malik ;
Kim, Hyung-Chan ;
Jo, Jeongdai .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2013, 16 (05) :1285-1291
[4]   ELECTRICAL TRANSPORT IN POLYETHYLENE-GRAPHITE COMPOSITE-MATERIALS [J].
EZQUERRA, TA ;
KULESCZA, M ;
BALTACALLEJA, FJ .
SYNTHETIC METALS, 1991, 41 (03) :915-920
[5]   New nanocomposite materials made of an insulating matrix and conducting fillers:: Processing and properties [J].
Flandin, L ;
Bidan, G ;
Brechet, Y ;
Cavaillé, JY .
POLYMER COMPOSITES, 2000, 21 (02) :165-174
[6]   Electrical and elastic properties of conductor-polymer composites [J].
Ishigure, Y ;
Iijima, S ;
Ito, H ;
Ota, T ;
Unuma, H ;
Takahashi, M ;
Hikichi, Y ;
Suzuki, H .
JOURNAL OF MATERIALS SCIENCE, 1999, 34 (12) :2979-2985
[7]   ZrO2-WC nanocomposites with superior properties [J].
Jiang, Dongtao ;
Van der Biest, Omer ;
Vleugels, Jef .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2007, 27 (2-3) :1247-1251
[8]   Study of Oxygen Permeability and Flame Retardancy Properties of Biodegradable Polymethylmethacrylate/Starch Composites [J].
Kisku, Sudhir K. ;
Swain, Sarat K. .
POLYMER COMPOSITES, 2012, 33 (01) :79-84
[9]   Nanocomposites based on montmorillonite and unsaturated polyester [J].
Kornmann, X ;
Berglund, LA ;
Sterte, J .
POLYMER ENGINEERING AND SCIENCE, 1998, 38 (08) :1351-1358
[10]   The effect of zirconium oxide coating on the lithium nickel cobalt oxide for lithium secondary batteries [J].
Lee, Sang Myoung ;
Oh, Si Hyoung ;
Cho, Won Il ;
Jang, Ho .
ELECTROCHIMICA ACTA, 2006, 52 (04) :1507-1513