Magnetic versus manual guidewire manipulation in neuroradiology:: in vitro results

被引:41
作者
Krings, T
Finney, J
Niggemann, P
Reinacher, P
Lück, N
Drexler, A
Lovell, J
Meyer, A
Sehra, R
Schauerte, P
Reinges, M
Hans, FJ
Thron, A
机构
[1] Univ Hosp Aachen, Dept Neuroradiol, D-52057 Aachen, Germany
[2] Univ Hosp Aachen, Dept Neurosurg, D-52057 Aachen, Germany
[3] Stereotaxis Inc, St Louis, MO USA
[4] Siemens Med Solut, Forchheim, Germany
[5] Univ Hosp Aachen, Clin Cardiol, D-52057 Aachen, Germany
关键词
magnetic navigation; neurointervention; aneurysm;
D O I
10.1007/s00234-006-0082-3
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Introduction: Standard microguidewires used in interventional neuroradiology have a predefined shape of the tip that cannot be changed while the guidewire is in the vessel. We evaluated a novel magnetic navigation system (MNS) that generates a magnetic field to control the deflection of a microguidewire that can be used to reshape the guidewire tip in vivo without removing the wire from the body, thereby potentially facilitating navigation along tortuous paths or multiple acute curves. Method: The MNS consists of two permanent magnets positioned on either side of the fluoroscopy table that create a constant precisely controlled magnetic field in the defined region of interest. This field enables omnidirectional rotation of a 0.014-inch magnetic microguidewire (MG). Speed of navigation, accuracy in a tortuous vessel anatomy and the potential for navigating into in vitro aneurysms were tested by four investigators with differing experience in neurointervention and compared to navigation with a standard, manually controlled microguidewire (SG). Results: Navigation using MG was faster (P=0.0056) and more accurate (0.2 mistakes per trial vs. 2.6 mistakes per trial) only in less-experienced investigators. There were no statistically significant differences between the MG and the SG in the hands of experienced investigators. One aneurysm with an acute angulation from the carrier vessel could be navigated only with the MG while the SG failed, even after multiple reshaping manoeuvres. Conclusion: Our findings suggest that magnetic navigation seems to be easier, more accurate and faster in the hands of less-experienced investigators. We consider that the features of the MNS may improve the efficacy and safety of challenging neurointerventional procedures.
引用
收藏
页码:394 / 401
页数:8
相关论文
共 14 条
[1]   Evaluation of magnetic navigation in an in vitro model of uterine artery embolization [J].
Dietrich, T ;
Kleen, M ;
Killmann, R ;
Wiesinger, B ;
Wiskirchen, J ;
Tepe, G ;
Claussen, CD ;
Duda, SH .
JOURNAL OF VASCULAR AND INTERVENTIONAL RADIOLOGY, 2004, 15 (12) :1457-1462
[2]   Remote catheter ablation of parahisian accessory pathways using a novel magnetic navigation system - A report of two cases [J].
Ernst, S ;
Hachiya, H ;
Chun, JKR ;
Ouyang, F .
JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2005, 16 (06) :659-662
[3]   Initial experience with remote catheter ablation using a novel magnetic navigation system -: Magnetic remote catheter ablation [J].
Ernst, S ;
Ouyang, FF ;
Linder, C ;
Hertting, K ;
Stahl, F ;
Chun, J ;
Hachiya, H ;
Bänsch, D ;
Antz, M ;
Kuck, KH .
CIRCULATION, 2004, 109 (12) :1472-1475
[4]   Novel, magnetically guided catheter for endocardial mapping and radiofrequency catheter ablation [J].
Faddis, MN ;
Blume, W ;
Finney, J ;
Hall, A ;
Rauch, J ;
Sell, J ;
Bae, KT ;
Talcott, M ;
Lindsay, B .
CIRCULATION, 2002, 106 (23) :2980-2985
[5]   Magnetic catheter manipulation [J].
Faddis, MN ;
Lindsay, BD .
CORONARY ARTERY DISEASE, 2003, 14 (01) :25-27
[6]   Experimental study of the magnetic stereotaxis system for catheter manipulation within the brain [J].
Grady, MS ;
Howard, MA ;
Dacey, RG ;
Blume, W ;
Lawson, M ;
Werp, P ;
Ritter, RC .
JOURNAL OF NEUROSURGERY, 2000, 93 (02) :282-288
[7]  
JENKINS A, 1959, J APPL PHYS, V30, P238
[8]   A refined method for creating saccular aneurysms in the rabbit [J].
Krings, T ;
Möller-Hartmann, W ;
Hans, FJ ;
Thiex, R ;
Brunn, A ;
Scherer, K ;
Meetz, A ;
Dreeskamp, H ;
Stein, KP ;
Gilsbach, JM ;
Thron, A .
NEURORADIOLOGY, 2003, 45 (07) :423-429
[9]   HEART CATHETERIZATION IN A NEONATE BY INTERACTING MAGNETIC-FIELDS - A NEW AND SIMPLE METHOD OF CATHETER GUIDANCE [J].
RAM, W ;
MEYER, H .
CATHETERIZATION AND CARDIOVASCULAR DIAGNOSIS, 1991, 22 (04) :317-319
[10]   Vascular guide wire navigation with a magnetic guidance system: Experimental results in a phantom [J].
Schiemann, M ;
Killmann, R ;
Kleen, M ;
Abolmaali, N ;
Finney, J ;
Vogl, TJ .
RADIOLOGY, 2004, 232 (02) :475-481