TRIANGULATED QUOTIENT CATEGORIES

被引:17
作者
Liu, Yu [1 ]
Zhu, Bin [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
Mutation; Quotient triangulated category; Right triangulated category; 16G20; 16G70; 19S99; 17B20; CLUSTER; ALGEBRAS;
D O I
10.1080/00927872.2012.676116
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A notion of mutation of subcategories in a right triangulated category is defined in this article. When (?, ?) is a ?-mutation pair in a right triangulated category ?, the quotient category ?/? carries naturally a right triangulated structure. Moreover, if the right triangulated category satisfies some reasonable conditions, then the right triangulated quotient category ?/? becomes a triangulated category. When ? is triangulated, our result unifies the constructions of the quotient triangulated categories by Iyama-Yoshino and by JOrgensen, respectively.
引用
收藏
页码:3720 / 3738
页数:19
相关论文
共 16 条
[1]  
Assem I., 1998, CANANDIAN MATH SOC C, V24
[2]  
Assem I., 2006, LOND MATH SOC STUD T, V1, P65, DOI DOI 10.1017/CB09780511614309
[3]   LEFT TRIANGULATED CATEGORIES ARISING FROM CONTRAVARIANTLY FINITE SUBCATEGORIES [J].
BELIGIANNIS, A ;
MARMARIDIS, N .
COMMUNICATIONS IN ALGEBRA, 1994, 22 (12) :5021-5036
[4]  
Beligiannis A., 2007, MEM AM MATH SOC, V883, P426
[5]   Tilting theory and cluster combinatorics [J].
Buan, Aslak Bakke ;
Marsh, Bethany Rose ;
Reineke, Markus ;
Reiten, Idun ;
Todorov, Gordana .
ADVANCES IN MATHEMATICS, 2006, 204 (02) :572-618
[6]   Quivers with relations arising from clusters (An case) [J].
Caldero, P ;
Chapoton, F ;
Schiffler, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (03) :1347-1364
[7]   Cluster algebras I: Foundations [J].
Fomin, S ;
Zelevinsky, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (02) :497-529
[8]  
Happel D., 1988, TRIANGULATED CATEGOR, V119
[9]   Mutation in triangulated categories and rigid Cohen-Macaulay modules [J].
Iyama, Osamu ;
Yoshino, Yuji .
INVENTIONES MATHEMATICAE, 2008, 172 (01) :117-168
[10]   Quotients of cluster categories [J].
Jorgensen, Peter .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2010, 140 :65-81