Antiperiodic Boundary Value Problems for Second-Order Impulsive Ordinary Differential Equations

被引:5
作者
Bai, Chuanzhi [1 ]
机构
[1] Huaiyin Teachers Coll, Dept Math, Jiangsu 223300, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1155/2008/585378
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a second-order ordinary differential equation with antiperiodic boundary conditions and impulses. By using Schaefer's fixed-point theorem, some existence results are obtained. Copyright (c) 2008 Chuanzhi Bai.
引用
收藏
页数:14
相关论文
共 38 条
[11]   Anti-periodic solutions for fully nonlinear first-order differential equations [J].
Chen, Yuqing ;
Nieto, Juan J. ;
O'Regan, Donal .
MATHEMATICAL AND COMPUTER MODELLING, 2007, 46 (9-10) :1183-1190
[12]   Anti-periodic boundary value problems for first order impulsive functional differential equations [J].
Ding, Wei ;
Xing, Yepeng ;
Han, Maoan .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (01) :45-53
[13]   First-order impulsive ordinary differential equations with anti-periodic and nonlinear boundary conditions [J].
Franco, D ;
Nieto, JJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (02) :163-173
[14]   Existence of solutions for first order ordinary differential equations with nonlinear boundary conditions [J].
Franco, D ;
Nieto, JJ ;
O'Regan, D .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 153 (03) :793-802
[15]  
Franco D, 2003, MATH INEQUAL APPL, V6, P477
[16]  
Jankowski T, 2004, COMPUT MATH APPL, V47, P1419, DOI 10.1016/j.camwa.2004.04.025
[17]  
Jankowski T, 2007, INDIAN J PURE AP MAT, V38, P203
[18]  
Laksmikantham V., 1989, SERIES MODERN APPL M, V6
[19]  
LI J, 2005, NONLINEAR STUDIES, V12, P391
[20]   Impulsive periodic boundary value problems of first-order differential equations [J].
Li, Jianli ;
Nieto, Juan J. ;
Shen, Jianhua .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) :226-236