A mixed problem for the infinity Laplacian via Tug-of-War games

被引:28
作者
Charro, Fernando [1 ]
Garcia Azorero, Jesus [1 ]
Rossi, Julio D. [2 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
[2] Univ Buenos Aires, FCEyN, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
关键词
UNIQUENESS;
D O I
10.1007/s00526-008-0185-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that a function u is an element of c((Omega) over bar) is the continuous value of the Tug-of-War game described in Y. Peres et al. (J. Am. Math. Soc., 2008, to appear) if and only if it is the unique viscosity solution to the infinity Laplacian with mixed boundary conditions {-Delta(infinity)u(x) = 0 in Omega, partial derivative u/partial derivative n(x) = 0 on Gamma(N), u(x) = F(x) on Gamma(D). By using the results in Y. Peres et al. (J. Am. Math. Soc., 2008, to appear), it follows that this viscous PDE problem has a unique solution, which is the unique absolutely minimizing Lipschitz extension to the whole (Omega) over bar (in the sense of Aronsson (Ark. Mat. 6:551-561, 1967) and Y. Peres et al. (J. Am. Math. Soc., 2008, to appear)) of the Lipschitz boundary data F : Gamma(D)-> R.
引用
收藏
页码:307 / 320
页数:14
相关论文
共 19 条
[1]  
AMBROSIO L, LECT NOTES OPTIMAL T
[2]   EXTENSION OF FUNCTIONS SATISFYING LIPSCHITZ CONDITIONS [J].
ARONSSON, G .
ARKIV FOR MATEMATIK, 1967, 6 (06) :551-&
[3]   A tour of the theory of absolutely minimizing functions [J].
Aronsson, G ;
Crandall, MG ;
Juutinen, P .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 41 (04) :439-505
[4]   FULLY NONLINEAR NEUMANN TYPE BOUNDARY-CONDITIONS FOR 2ND-ORDER ELLIPTIC AND PARABOLIC EQUATIONS [J].
BARLES, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 106 (01) :90-106
[5]   Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term [J].
Barles, G ;
Busca, J .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (11-12) :2323-2337
[6]   The infinity Laplacian, Aronsson's equation and their generalizations [J].
Barron, E. N. ;
Evans, L. C. ;
Jensen, R. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (01) :77-101
[7]  
Bhattacharya T., 1991, Some Topics in Nonlinear PDEs, P15
[8]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[9]   Uniqueness of ∞-harmonic functions and the eikonal equation [J].
Crandall, Michael G. ;
Gunnarsson, Gunnar ;
Wang, Peiyong .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (10-12) :1587-1615
[10]  
Evans LC, 1999, MEM AM MATH SOC, V137, P1